CONTEXT 291

terms are more important than others, then those fragments containing impor-
tant terms should be shown before those that contain only less important terms.
However, to help retain coherence of the excerpts, selected sentences should be
shown in order of their occurrence in the original document, independent of how
many search terms they contain.

The KWIC facility is usually not shown in Web search result display, most
likely because the system must have a copy of the original document available
from which to extract the sentences containing the search terms. Web search en-
gines typically only retain the index without term position information. Systems
that index individual Web sites can show KWIC information in the document
list display.

TileBars

A more compact form of query term hit display is made available through the
TileBars interface. The user enters a query in a faceted format, with one topic
per line. After the system retrieves documents (using a quorum or statistical
ranking algorithm), a graphical bar is displayed next to the title of each doc-
ument showing the degree of match for each facet. TileBars thus illustrate at
a glance which passages in each article contain which topics - and moreover,
how frequently each topic is mentioned (darker squares represent more frequent
matches).

Each document is represented by a rectangular bar. Figure 10.15 shows an
example. The bar is subdivided into rows that correspond to the query facets.
The top row of each TileBar corresponds to ‘osteoporosis,” the second row to
‘prevention,” and the third row to ‘research.” The bar is also subdivided into
columns, where each column refers to a passage within the document. Hits that
overlap within the same passage are more likely to indicate a relevant document
than hits that are widely dispersed throughout the document [356]. The pat-
terns are meant to indicate whether terms from a facet occur as a main topic
throughout the document. as a subtopic, or are just mentioned in passing.

The darkness of each square corresponds to the number of times the query
occurs in that segment of text: the darker the square the greater the number of
hits. White indicates no hits on the query term. Thus. the user can quickly see
if some subset of the terms overlap in the same segment of the document. (The
segmients for this version of the interface are fixed blocks of 100 tokens each.)

The first document can be seen to have considerable overlap among the
topics of interest towards the middle, but not at the beginning or the end (the
actual end is cut off). Thus it most likely discusses topics in addition to research
into osteoporosis. The second through fourth documents, which are considerably
shorter. also have overlap among all terms of interest, and so are also probably of
interest to the user. (The titles help to verify this.) The next three documents are
all long. and from the TileBars we can tell they discuss research and prevention,
but do not even touch on osteoporosis. and so probably are not of interest.

Because the TileBars interface allows the user to specify the query in terms

292 USER INTERFACES AND VISUALIZATION

Usor Query
“(’S!\uf!n@hfbdﬂhm;lwhmmlbu.) Run Search | New Query | _Qut |
osteaporusis Search Limit: ., 50 «. 100 & 250 .. 500 . 10(
prevention

research T ~ = ===-1 Number of Clusters: ., 3 - 4 5+ 8 « 10
Mode: TileBars

Cluster | Titles | Backup

i
J

FR88513-0157

AP: Groups Seek $1 Billion a Year for Aging Research

SIMN: WOMEN'S HEALTH LEGISLATION PROPOSED CF
AP: Older Athletes Run For Science

FR: Committee Meetings

FR: October Advisory Committees; Meetings
FR88120-0046
FR: Chronic Disease Burden and Prevention Models; Program .

AP: Survey Says Experts Split on Diversion of Funds for AIDS
FR: Consolidated Delegations of Authority for Policy Developn
SIMN: RESEARCH FOR BREAST CANCER IS STUCK IN P

e

SRN— |

Figure 10.15 An example of the TileBars retrieval results visualization [355].

of facets, where the terms for each facet are listed on an entry line, a color can
be assigned to each facet. When the user displays a document with query term
hits, the user can quickly ascertain what proportion of search topics appear in
a passage based only on how many different highlight colors are visible. Most
systems that use highlighting use only a single color to bring attention to all of
the search terms.

It would be difficult for users to specify in advance which patterns of term
hits they are interested in. Instead. TileBars allows users to scan graphic rep-
resentations and recognize which documents are and are not of interest. It may
be the case that TileBars may be most useful for helping users discard mislead-
ingly interesting documents, but only preliminary studies have been conducted
to date. Passages can correspond to paragraphs or sections, fixed sized units of
arbitrary length, or to automatically determined multiparagraph segments [355].

SeeSoft

The SeeSoft visualization [232] represents text in a manner resembling columns
of newspaper text, with one ‘line’ of text on each horizontal line of the strip.
(See Figure 10.16.) The representation is compact and aesthetically pleasing.
Graphics are used to abstract away the details, providing an overview showing
the amount and shape of the text. Color highlighting is used to pick out various
attributes, such as where a particular word appears in the text. Details of a
smaller portion of the display can be viewed via a pop-up window: the overview

CONTEXT 293

shows more of the text but in less detail.

18,18

Lnes 4326
indenAnima
Brows Glay

Slow . 44 ~ummes

Figure 10.16 An example of the SeeSoft visualization for showing locations of char-
acters within a text [232].

SeeSoft was originally designed for software developuient. in which a line
of text is a meaningful unit of information. (Programmers tend to place each
individual programming statement on one line of text.) Thus SecSoft shows
attributes relevant to the programming domain, such as which lines of code
were modified by which programmer. and how often particular lines have been
modified, and how many days have elapsed since the lines were last modified.
The SeeSoft developers then experimented with applying this idea to the display
of text, although this has not been integrated into an information access system.
Color highlighting is used to show which characters appear where in a book of
fiction, and which passages of the Bible contain references to particular people
and items. Note the use of the abstraction of an entire line to stand for a single
word such as a character's name (even though though this might obscure a tightly
interwoven conversation between two characters).

10.6.3 Query Term Hits Between Documents

Other visualization ideas have been developed to show a different kind of infor-
mation about the relationship between query terms and retrieved documents.
Rather than showing how query terms appear within individual documents, as
is done in KWIC interfaces and TileBars, these systems display an overview or
summary of the retrieved documents according to which subset of query terms
they contain. The following subsections describe variations on this idea.

294 USER INTERFACES AND VISUALIZATION
A B
@% = &

4\

{ q@ B
&

127

C D

Figure 10.17 A sketch of the InfoCrystal retrieval results display [738].

InfoCrystal

The InfoCrystal shows how many documents contain each subset of query terms
[738]. This relieves the user from the need to specify Boolean ANDs and ORs
in their query, while still showing which combinations of terms actually appear
in documents that were ordered by a statistical ranking (although beyond four
terms the interface becomes difficult to understand). The InfoCrystal allows vi-
sualization of all possible relations among N user-specified ‘concepts’ (or Boolean
keywords). The InfoCrystal displays, in a clever extension of the Venn diagram
paradigm, the number of documents retrieved that have each possible subset
of the N concepts. Figure 10.17 shows a sketch of what the InfoCrystal might
display as the result of a query against four keywords or Boolean phrases, la-
beled A, B, C, and D. The diamond in the center indicates that one document
was discovered that contains all four keywords. The triangle marked with ‘12’
indicates that 12 documents were found containing attributes A, B, and D, and
SO om.

The InfoCrystal does not show proximity among the terms within the doc-
uments, nor their relative frequency. So a document that contains dozens of hits
on ‘volcano’ and ‘lava’ and one hit on *Mars’ will be grouped with documents
that contain mainly hits on ‘Mars’ but just one mention each of ‘volcano’ and
‘lava.’

CONTEXT 295

navigation

hypertext-engineering
4 i
knowledge
representation

2!
usability-links-and-fiction (2

authoring
c

implementations-
and-intertaces

application

Figure 10.18 An example of the VIBE retrieval results display [452)].

VIBE and Lyberworld

Graphical presentations that operate on similar principles are VIBE [452] and
Lyberworld {363]. In these displays, query terms are placed in an abstract graph-
ical space. After the search, icons are created that indicate how many documents
contain each subset of query terms. The subset status of each group of docu-
ments is indicated by the placement of the icon. For example, in VIBE a set
of documents that contain three out of five query terms are shown on an axis
connecting these three terms, at a point midway between the representations of
the three query terms in question. (See Figure 10.18.) Lyberworld presents a
3D version of this idea. '

Lattices

Several researchers have employed a graphical depiction of a mathematical lat-
tice for the purposes of query formulation, where the query consists of a set of
constraints on a hierarchy of categories (actually, semantic attributes in these
systems) [631, 147]. This is one solution to the problem of displaying documents
in terms of multiple attributes; a document containing terms A, B, C,and D
could be placed at a point in the lattice with these four categories as parents.
However, if such a representation were to be applied to retrieval results instead
of query formulation, the lattice layout would in most cases be too complex to
allow for readability.

None of the displays discussed in this subsection have been evaluated for effec-
tiveness at improving query specification or understanding of retrieval results,
but they are intriguing ideas and perhaps are useful in conjunction with other
displays.

296 USER INTERFACES AND VISUALIZATION

w_Oviem fwngrten ey ey indews 1oy
T 8- A Intersctive Devisaweent For Buts Meelpsts Mné | 8- e intersctive oviroment Sor Suts Mealpsle dud Syaphien
Sewpince 4. rtisede an 5
Protace tlr.mnn—um

5 Maturg Swhaces 1o Mo Sisamsise
4F5 Rathiap Suchmia ko Pies Doy T

runchiany are cancarmed sith the Arsplay af mufaces

z
3 5 Fnctan of te unooabirm Dhe Prest.

s,

ik atom Lines of
e ponstanne -
I‘{ of 'he wilwe yt
on the wctus baght
3 s Qv Wy v,
TN pr A

o 1n the
g3} corrdinatas
b D defmeir

111 acdiants
e x D-sinensomel

Quy. Sreg Saaeny’

{orve mw—- {7y
fowa, . i
L TR,

Figure 10.19 The SuperBook interface for showing retrieval results on a large man-
ual in context [481].

10.6.4 SuperBook: Context via Table of Contents

The SuperBook system [481. 229, 230] makes use of the structure of a large
document to display query term hits in context. The table of contents (TOC)
for a book or manual are shown in & hierarchy on the left-hand side of the display,
and full text of a page or section is shown on the right-hand side. The user can
manipulate the table of contents to expand or contract the view of sections and
stbsections. A focus-plus-context mechanism is used to expand the viewing area
of the sections currently being looked at and compress the remaining sections.
When the user moves the cursor to another part of the TOC, the display changes
dynamically, making the new focus larger and shrinking down the previously
observed sections.

After the user specifies a query on the book, the search results are shown
in the context of the table of contents hierarchy. (See Figure 10.19.) Those
sections that contain search hits are made larger and the others are compressed.
The query terms that appear in chapter or section names are highlighted in
reverse video. When the user selects a page from the table of contents view, the
page itself is displayed on the right-hand side and the query terms within the
page arc highlighted in reverse video.

The SuperBook designers created innovative techniques for evaluating its
special features. Subjects were compared using this system against using pa-
per documentation and against a more standard online information access sys-
tem. Subjects were also compared on different kinds of carefully selected tasks:
browsing topics of interest, citation searching, searching to answer questions,
and searching and browsing to write summary essays. For most of the tasks

CONTEXT 297

SuperBook subjects were faster and more accurate or equivalent in speed and
accuracy to a standard system. When differences arose between SuperBook and
the standard system, the investigators examined the logs carefully and hypothe-
sized plausible explanations. After the initial studies, they modified SuperBook
according to these hypotheses and usually saw improvements as a result [481].

The user studies on the improved system showed that users were faster and
more accurate at answering questions in which some of the relevant terms were
within the section titles themselves, but they were also faster and more accurate
at answering questions in which the query terms fell within the full text of the
document only, as compared both to a paper manual and to an interface that did
not provide such contextualizing information. SuperBook was not faster than
paper when the query terms did not appear in the document text or the table
of contents. This and other evidence from the SuperBook studies suggests that
query term highlighting is at least partially responsible for improvements seen
in the system.

10.6.5 Categories for Results Set Context

In section 10.4 we saw the use of category or directory information for providing
overviews of text collection content. Category metadata can also be used to
place the results of a query in context.

For example, the original formulation of SuperBook allowed navigation
within a highly structured document, a computer manual. The CORE project
extended the main idea to a collection of over 1000 full-text chemistry articles.
A study of this representation demonstrated its superiority to a standard search
system on a variety of task types [228]. Since a table of contents is not available
for this collection, context is provided by placing documents within a category
hierarchy containing terms relevant to chemistry. Documents assigned a category
are listed when that category is selected for more detailed viewing, and the
categories themselves are organized into a hierarchy, thus providing a hierarchical
view on the collection.

Another approach to using predefined categories to provide context for
retrieval results is demonstrated by the DynaCat system [650]. The DynaCat
system organizes retrieved documents according to which types of categories, se-
lected from the large MeSH taxonomy, are known in advance to be important for
a given query type. DynaCat begins with a set of query types known to be useful
for a given user population and collection. One query type can encompass many
different queries. For example, the query type ‘Treatment- Adverse Effects’ covers
queries such as ‘What are the complications of a mastectomy?’ as well as ‘What
are the side-effects of aspirin?’ Documents are organized according to a set of cri-
teria associated with each query type. These criteria specify which types of cate-
gories that are acceptable to use for organizing the documents and consequently,
which categories should be omitted from the display. Once categories have been
assigned to the retrieved documents, a hierarchy is formed based on where the
categories exist within MeSH. The algorithm selects only a subset of the category

298 USER INTERFACES AND VISUALIZATION
0z

 Query: What are the ways to prevent breast canc.. —=gR

Query: What are the ways to prevent breast cancer?
‘ (83 different references retrieved)

Behavior and Behavior [~ Behavior and Behavior Mechanisms
Mechanisms (14xefs) 1= 7 pitude

: gi?’:‘“v‘_li&(?é@rési;\ e Attitude to Health

. P?"ych()log;,*d e ForLaida intervention model far
srevention in Latina

icer prevention eduation

enterinlzrael a student

Biochemical
Phenomena,
Metabolism, and
Numton (S refs)

& Diet (5 1efs)
Chemicals and Dings

challennes in secondary
nton arbreast cancer for wiormen

(52 refs) d
® Amino Acids, Aostudy of diet and hreast cancer
Peptides, and aresention in Canada why healthy
Proteinz (2 1efy) wedrpen participate nocontralled tials
;nﬁ‘“"“wpl““mc « Knowledge, Attitudes, Practice
Immunosuppressive b e ForLatdds intervention madel for
Agents (18 refs) - cancer preventicrn Latinas

4 | i § 1> 4|

Figure 10.20 The DynaCat interface for viewing category labels that correspond
to query types [650].

labels that might be assigned to the document to be used in the organization.

Figure 10.20 shows the results for a query on breast cancer prevention. The
interface is tiled into three windows. The top window displays the user’s query
and the number of documents found. The left window shows the categories in
the first two levels of the hierarchy, providing a table of contents view of the
organization of search results. The right pane displays all the categories in the
hierarchy and the titles of the documents that belong in those categories.

An obstacle to using category labels to organize retrieval results is the re-
quirement of precompiled knowledge about which categories are of interest for a
particular user or a particular query type. The SONIA system [692] circumvents
this problem by using a combination of unsupervised and supervised methods
to organize a set of documents. The unsupervised method (document clustering
similer to Scatter/Gather) imposes an initial organization on a user’s personal
information collection or on a set of documents retrieved as the result of a query.
The user can then invoke a direct manipulation interface to make adjustments
to this initial clustering, causing it to align more closely with their preferences
(because unsupervised methods do not usually produce an organization that
corresponds to a human-derived category structure [357]). The resulting orga-
nization is then used to train a supervised text categorization algorithm which
automatically classifies any new documents that are added to the collection. As
the collection grows it can be periodically reorganized by rerunning the clustering
algorithm and redoing the manual adjustments.

CONTEXT 299
10.6.6 Using Hyperlinks to Organize Retrieval Results

Although the SuperBook authors describe it as a hypertext system, it is actu-
ally better thought of as a means of showing search results in the context of a
structure that users can understand and view all at once. The hypertext com-
ponent was not analyzed separately to assess its importance, but it usually is
not mentioned by the authors when describing what is successful about their
design. In fact, it seems to be responsible for one of the main problems seen
with the revised version of the system — that users tend to wander off (often
unintentionally) from the pages they are reading, thus causing the time spent
on a given topic to be longer for SuperBook in some cases. (Using completion
time to evaluate users on browsing tasks can be problematic, however, since by
definition browsing is a casual, unhurried process [804].)

This wandering may occur in part because SuperBook uses a non-standard
kind of hypertext, in which any word is automatically linked to occurrences of
the same word in other parts of the document. This has not turned out to be
how hypertext links are created in practice. Today, hyperlinked help systems
and hyperlinks on the Web make much more discriminating use of hyperlink
connections (in part since they are usually generated by an author rather than
automatically). These links tend to be labeled in a somewhat meaningful manner
by their surrounding context. Back-of-the-book indexes often do not contain
listings of every occurrence of a word, but rather to the more important uses or
the beginnings of series of uses. Automated hypertext linking should perhaps be
based on similar principles. Additionally, at least one study showed that users
formed better mental models of a small hypertext system that was organized
hierarchically than one that allowed more flexible access [226]. Problems relating
to navigation of hypertext structure have long been suspected and investigated
in the hypertext literature [181, 551, 440, 334].

More recent work has made better use of hyperlink information for provid-
ing context for retrieval results. Some of this work is described below.

Cha-Cha: SuperBook on the Web

The Cha-Cha intranet search system [164] extends the SuperBook idea to a
large heterogeneous Web site such as might be found in an organization’s in-
tranet. Figure 10.21 shows an example. This system differs from SuperBook in
several ways. On most Web sites there is no existing real table of contents or
category structure, and an intranet like those found at large universities or large
corporations is usually not organized by one central unit. Cha-Cha uses link
structure present within the site to create what is intended to be a meaningful
organization on top of the underlying chaos. After the user issues a query, the
shortest paths from the root page to each of the search hits are recorded and
a subset of these are selected to be shown as a hierarchy, so that each hit is
shown only once. (Users can begin with a query, rather than with a table of con-
tents view.) If a user does not know to use the term ‘health center’ but instead

queries on ‘medical center,’ if ‘medical’ appears as a term in a document within

300 USER INTERFACES AND VISUALIZATION

“'BM*MS ,A Locaﬁm‘.;servbl/chachﬁdomamberkeley edu&instﬂ&(esdtsxm&wnlds,:medvcakcemev&seachwﬂ&layoul#rms ﬂ ﬂ
; Laiiis” "

e

- 2l
University Health Services
* Health Services for Faeulty and Staff
= Other Programs Availanle to Faculty and Staff
& Health et

Colleges and Schools

~ School of Sopal Welfare: Home Page
= Brograms, Curricula, and Courses
« MSW PROGRAM
B Field work Agercies

* The Letters & Scence WWW Home Page
* Departments & Divisions
* Townsend Center for the Humarities, U0 Berkeley
B September Townsend Center Newslstter
bioethics

Page Summary

@ Health Net |
Health Net HealthNet Health |
Care.....University Health Services
(UHS) at the University of Calfornia at
Berkeley offers general medical office
visits, physical therapy, and
labaratory services to faculty and staff
who are HealthNet members and
have selected a Personal Care |
Physician (PCP) at the Tang

Center Hospitalization: If you
need to be hospitalized, in most
cases you will be cared for at Alta
Bates Medical Center by a physician
affiliated with Alta Bates Tittle is
active in guality assurance activities
at Unwversity Health Services where

he has beer a physician since 1977. J
He received his medical degree from
Stanford Uriversity in 1873 and
specialized iry Internal Medicine during
his residencies at Pacific Medical

Center and UCS...

The UC Berkeley |ibraries
* UC Berkeley Libraries

“ Health s Inforn:ation Service
HS1S Medical Informatics

http:/fwww.uhs berkeley.edu/F acStafifhealthNet.htm
(Size: 10K)

* Center for Southeast Asia Studies
B CSEAS Newslettar, Upcoming Events Spring 1936

Policies and Guidelines for Web Publishing at ...

> Image/Multimed:s Database Resource

<

Medical Image Data

1-20 of 825 matches

List ViewQ Nexts 5]

medical center Search

= Seciment Dre

- I

a2 | 4

Figure 10.21 The Cha-Cha interface for showing Web intranet search results in
context displaying results on the query ‘medical centre’[164].

the health center part of the Web, the home page (or starting point) of this
center will be presented as well as the more specific hits. Users can then either
query or navigate within a subset of sites if they wish. The organization pro-
duced by this simple method is surprisingly comprehensible on the UC Berkeley
site. It seems especially useful for providing the information about the sources
(the Web server) associated with the search hits, whose titles are often cryptic.

The AMIT system [826] also applies the basic ideas behind SuperBook to
the Web, but focuses on a single-topic Web site, which is likely to have a more
reasonable topic structure than a complex intranet. The link structure of the
Web site is used as contextualizing information but all of the paths to a given
document are shown and focus-plus-context is used to emphasize subsets of the
document space. The WebTOC system [585] is similar to AMIT but focuses on
showing the structure and number of documents within each Web subhierarchy,
and is not tightly coupled with search.

CONTEXT 301

hachiets | %1 =i i
AR 18V Splites We

B 1BM Research P
Y i

B Two tlpc

B New o

Figure 10.22 Example of a Web subset visualized by Mapuccino (courtesy of M.
Jacovi, B. Shaul and Y. Maarek).

Mapuccino: Graphical Depiction of Link Structure

The Mapuccino system (formerly WebCutter) [527] allows the user to issue a
query on a particular Web site. The system crawls the site in real-time, checking
each encountered page for relevance to the query. When a relevant page is found,
the weights on that page’s outlinks are increased. Thus, the search is based partly
on an assumption that relevant pages will occur near one another in the Web
site. The subset of the Web site that has been crawled is depicted graphically
in a nodes-and-links view (see Figure 10.22). This kind of display does not
provide the user with information about what the contents of the pages are, but
rather only shows their link structure. Other researchers have also investigated
spreading activation among hypertext links as a way to guide an information
retrieval system, e.g., [278, 555].

10.6.7 Tables

Tabular display is another approach for showing relationships among retrieval
documents. The Envision system [273] allows the user to organize results accord-
ing to metadata such as author or date along the X and Y-axes, and uses graphics
to show values for attributes associated with retrieved documents within each
cell (see Figure 10.23). Color, shape, and size of an iconic representation of a
document are used to show the computed relevance, the type of document, or

302 USER INTERFACES AND VISUALIZATION

File EdR Query Window [Fie EGR Reauks

T 3 Best 78 Htema Found
o Findleon foon Label: Retevance Rank ¥ leonSie: Unllorm ¥
Query Htory: Do Sear i loon Cotor: Ewt. Relevance ¥ | wonShepe: PmTwpe ¢
63 Found - Short
1 ;a T.ul:‘; interface desigh] Cater Logewt User Rusing E Shape Logened
A:Cerd stusrc K ™ ® &
Y-hds: C-Am N -
Autner Y Nt U o
card, a8
bl 68
Cacd,
stuare
i L] n = [] In @
oS stuare x . ; . : iw &
Query #2.1
i Authors: Cacroll,
o " " John W.
Card, Stuart K. g a
3 Eatin, 5
[— _ Eileen 8 @ -
MordainTle: . e oy B ruchs. 5
Fpuman computer ini 3 Mency .
§
Rart,
R e
e
D Mustin ‘-S g
n,
Ralph D 5-7
) 1 =) = 1987
X-Mety: Pub. Yeer v
Ent. Rel dRer Your Tie

Tacd, Stwrt K TN Koy Governlng
30 card. Stuact K. 1963 The Paychology of Muen-Computer Interaction
Card] Stuact K 1964 Rumen Limits and the VDT Computer Interface

Figure 10.23 The Envision tabular display for graphically organizing retrieved doc-
uments [270].

other attributes. Clicking on an icon brings up more information about the doc-
ument in another window. Like the WebCutter system, this view provides few
cues about how the documents are related to one another in terms of their con-
tent or meaning. The SenseMaker system also allows users to group documents
into different views via a table-like display [51], including a Scatter/Gather [203]
style view. Although tables are appealing, they cannot show the intersections
of many different attributes; rather they are better for pairwise comparisons.
Another problem with tables for display of textual information is that very little
information can be fitted on a screen at a time, making comparisons difficult.

The Table Lens [666] is an innovative interface for viewing and interac-
tively reorganizing very large tables of information (see Figure 10.24). It uses
focus-plus-context to fit hundreds of rows of information in a space occupied
by at most two dozen rows in standard spreadsheets. And because it allows for
rapid reorganization via sorting of columns, users can quickly switch from a view
focused around one kind of metadata to another. For example, first sorting doc-
uments by rank and then by author name can show the relative ranks of different
articles by the same author. A re-sort by date can show patterns in relevance
scores with respect to date of publication. This rapid re-sorting capability helps
circumvent the problems associated with the fact that tables cannot show many
simultaneous intersections.

Another variation on the table theme is that seen in the Perspective Wall
[530] in which a focus-plus-context display is used to center information currently

USING RELEVANCE JUDGEMENTS 303

* Teble Lens

1993 ForeCode Pro i
]

||
1292 JForsword Pro L f228 78
. 48200 . |961
AL : 2400 720
2 i Retail 1060 300
ForeMost Server i - !
i — e

i
—

ForeMost Lite 5

r

761 684900 287658 |

475 427500 179560 ;
1428 385200 161784 "

g inxight ‘)(‘ |

Figure 10.24 The TableLens visualization [666].

of interest in the middle of the display, compressing less important information
into the periphery on the sides of the wall. The idea is to show in detail the cur-
rently most important information while at the same time retaining the context
of the rest of the information. For example, if viewing documents in chronolog-
ical order, the user can easily tell if they are currently looking at documents in
the beginning, middle, or end of the time range.

These interfaces have not been applied to information access tasks. The
problem with such displays when applied to text is that they require an attribute
that can be shown according to an underlying order, such as date. Unfortunately,
information useful for organizing text content, such as topic labels, does not
have an inherent meaningful order. Alphabetical order is useful for looking up
individual items, but not for seeing patterns across items according to adjacency,
as in the case for ordered data types like dates and size.

10.7 Using Relevance Judgements

An important part of the information access process is query reformulation, and
a proven effective technique for query reformulation is relevance feedback. In its
original form, relevance feedback refers to an interaction cycle in which the user
selects a small set of documents that appear to be relevant to the query, and the
system then uses features derived from these selected relevant documents to re-
vise the original query. This revised query is then executed and a new set of docu-
ments is returned. Documents from the original set can appear in the new results

304 USER INTERFACES AND VISUALIZATION

list. although they are likely to appear in a different rank order. Relevance feed-
back in its original form has been shown to be an effective mechanism for improv-
ing retrieval results in a variety of studies and settings [702, 343, 127]. In recent
years the scope of ideas that can be classified under this term has widened greatly.

Relevance feedback introduces important design choices, including which
operations should be performed automatically by the system and which should be
user initiated and controlled. Bates discusses this issue in detail [66], asserting
that despite the emphasis in modern systems to try to automate the entire
process, an intermediate approach in which the system helps automate search at
a strategic level is preferable. Bates suggests an analogy of an automatic camera
versus one with adjustable lenses and shutter speeds. On many occasions, a
quick, easy method that requires little training or thought is appropriate. At
other times the user needs more control over the operation of the machinery,
while still not wanting to know about the low level details of its operation.

A related idea is that, for any interface, control should be described in
terms of the task being done, not in terms of how the machine can be made to
accomplish the task [607]. Continuing the camera analogy, the user should be
able to control the mood created by the photograph, rather than the adjustment
of the lens. In information access systems, control should be over the kind
of information returned, not over which terms are used to modify the query.
Unfortunately it is often quite difficult to build interfaces to complex systems
that behave in this manner.

10.7.1 Interfaces for Standard Relevance Feedback

A standard interface for relevance feedback consists of a list of titles with check-
boxes beside the titles that allow the user to mark relevant documents. This
can imply either that unmarked documents are not relevant or that no opinion
has been made about unmarked documents, depending on the system. Ancther
option is to provide a choice among several checkboxes indicating relevant or
not relevant (with no selection implying no opinion). In some cases users are al-
lowed to indicate a value on a relevance scale [73]. Standard relevance feedback
algorithms usually do not perform better given negative relevance judgement
evidence [225], but machine learning algorithms can take advantage of negative
feedback {629, 460].

After the user has made a set of relevance judgements and issued a search
command, the system can either automatically reweight the query and re-execute
the search, or generate a list of terms for the user to select from in order to
augment the original query. (See Figure 10.25. taken from [448].) Systems
usually do not suggest terms to remove from the query.

After the query is re-executed, a new list of titles is shown. It can be
helpful to retain an indicator such as a marked checkbox beside the documents
that the user has already judged. A difficult design decision concerns whether or
not to show documents that the user has already viewed towards the top of the
ranked list [1]. Repeatedly showing the same set of documents at the top may
inconvenience a user who is trying to create a large set of relevant documents,

USING RELEVANCE JUDGEMENTS 305

= L . Rutgers INQUERY . R RN DTN R
[ENOO (aST RuN QUERY] Bhow search Topc Text] S [t fUTINGUERY)
Enter (next) auery term telow andhit <RETURK> [~ ~Jroumarkes 0 documents &

] L M Pian fuKecall 52.000 |48 83 Care Wiih Quad 4 Enaine;
z CM. Ecrd Re_ait Vehicles to Reparr Defective Parts ---- By Neal Temohin 5]
& 3 lsuzuMoTor, Honda Commence Car Recailt ---- A Wwali Streetjournal News |
“ Furd anc UM Recall Series OF Fichup Truck: Coupes
T 1S Coneral Moter: otp Reca 't 196,600 Car For Defective Branes
Totel of £747 documents refrieves pmoterank [y
Cocument 1 0f £747
i | i, I
with Quad 4 Engine;
ECCET Al sraeer jourad o

injurtes resuiting trom the incidents
car equirped with QUAas 4 engine; in ™e 1983-89 m

J-6, an
- 7 njuries refate
tnis group of car: the i
All18pa 15 wiil be dons
company caid
Separately, the US saies arm of volkswagen AG'S Aud
ng 1630 1 330-mod 8¢ 9C

ey Cars to repiace a o e

€ steering when the car tsparked
eah causing the steer.ng wheel To

supsid.ary saia tis
ana Coupe Cu
the assembly t
The defective

Figure 10.25 An example of an interface for relevance feedback [448].

but at the same time. this can serve as feedback indicating that the revised
query does not downgrade the ranking of those docuinents that have been found
especially immportant. One solution is to retain a separate window that shows the
rankings of only the documents that have not been retrieved or ranked highly
previously. Another solution is to use smaller fonts or gray-out color for the
titles of documents already seen.

Creating multiple relevance judgements is an effortful task, and the notion
of relevance feedback is unfamiliar to most users. To circumvent these prob-
lems, Web-based search engines have adopted the terminology of ‘more like this’
as a simpler way to indicate that the user is requesting documents similar to
the selected one. This ‘one-click’ interaction method is simpler than standard
relevance feedback dialog which requires users to rate a small number of doc-
uments and then request a reranking. Unfortunately, in most cases relevance
feedback requires many relevance judgements in order to work well. To partly
alleviate this problem, Aalbersberg [1] proposes incremental relevance feedback
which works well given only one relevant document at a time and thus can be
used to hide the two-step procedure from the user.

10.7.2 Studies of User Interaction with Relevance Feedback Systems

Standard relevance feedback assumes the user is involved in the interaction by
specifying the relevant documents. In some interfaces users are also able to

306 USER INTERFACES AND VISUALIZATION

select which terms to add to the query. However, most ranking and reweighting
algorithms are difficult to understand or predict (even for the creators of the
algorithms!) and so it might be the case that users have difficulties controlling
a relevance feedback system explicitly.

A recent study was conducted to investigate directly to what degree user
control of the feedback process is beneficial. Koenemann and Belkin (448] mea-
sured the benefits of letting users ‘under the hood’ during relevance feedback.
They tested four cases using the Inquery system [772]:

¢ Control No relevance feedback; the subjects could only reformulate the
query by hand.

e Opaque The subjects simply selected relevant documents and saw the
revised rankings.

¢ Transparent The subjects could see how the system reformulated the
queries (that is, see which terms were added — the system did not reweight
the subjects’ query terms) and the revised rankings.

¢ Penetrable The system is stopped midway through the reranking process.
The subjects are shown the terms that the system would have used for
opaque and transparent query reformulation. The subjects then select
which, if any, of the new terms to add to the query. The system then
presents the revised rankings.

The 64 subjects were much more effective (measuring precision at a cut-
off of top 5, top 10, top 30, and top 100 documents) with relevance feedback
than without it. The penetrable group performed significantly better than the
control, with the opaque and transparent performances falling between the two
in effectiveness. Search times did not differ significantly among the conditions,
but there were significant differences in the number of feedback iterations. The
subjects in the penetrable group required significantly fewer iterations to achieve
better queries (an average of 5.8 cycles in the penetrable group, 8.2 cycles in the
control group, 7.7 cycles in the opaque group, and surprisingly, the transparent
group required more cycles, 8.8 on average). The average number of documents
marked relevant ranged between 11 and 14 for the three conditions.- All subjects
preferred relevance feedback over the baseline system, and several remarked that
they preferred the ‘lazy’ approach of selecting suggested terms over having to
think up their own. '

An observational study on a TTY-based version of an online catalog system
[338] also found that users performed better using a relevance feedback mech-
anism that allowed manual selection of terms. However, a later observational
study did not find overall success with this form of relevance feedback (337]. The
authors attribute these results to a poor design of a new graphical interface.
These results may also be due to the fact that users often selected only one rel-
evant document before performing the feedback operation, although they were
using a system optimized from multiple document selection.

USING RELEVANCE JUDGEMENTS 307

10.7.3 Fetching Relevant Information in the Background

Standard relevance feedback is predicated on the goal of improving an ad hoc
query or building a profile for a routing query. More recently researchers have
begun developing systems that monitor users’ progress and behavior over long
interaction periods in an attempt to predict which documents or actions the user
is likely to want in future. These systems are called semi-automated assistants
or recommender ‘agents,” and often make use of machine learning techniques
[665]. Some of these systems require explicit user input in the form of a goal
statement [406] or relevance judgements [629], while others quietly record users’
actions and try to make inferences based on these actions.

A system developed by Kozierok and Maes [460, 536] makes predictions
about how users will handle email messages (what order to read them in, where
to file them) and how users will schedule meetings in a calendar manager ap-
plication. The system ‘looks over the shoulder’ of the users, recording every
relevant action into a database. After enough data has been accumulated, the
system uses a nearest-neighbors method [743] to predict a user’s action based
on the similarity of the current situation to situations already encountered. For
example, if the user almost always saves email messages from a particular per-
son into a particular file, the system can offer to automate this action the next
time a message from that person arrives [536]. This system integrates learning
from both implicit and explicit user feedback. If a user ignores the system’s
suggestion, the system treats this as negative feedback. and accordingly adds
the overriding action to the action database. After certain types of incorrect
predictions, the system asks the user questions that allow it to adjust the weight
of the feature that caused the error. Finally, the user can explicitly train the
system by presenting it with hypothetical examples of input-action pairs.

Another system, Syskill and Webert [629], attempts to learn a user profile
based on explicit relevance judgements of pages explored while browsing the
Web. In a sense this is akin to standard relevance feedback, except the user
judgements are retained across sessions and the interaction model differs: as the
user browses a new Web page, the links on the page are automatically annotated
as to whether or not they should be relevant to the user’s interest.

A related system is Letizia [518], whose goal is to bring to the user’s atten-
tion a percentage of the available next moves that are most likely to be of interest,
given the user’s earlier actions. Upon request, Letizia provides recommendations
for further action on the user’s part, usually in the form of suggestions of links to
follow when the user is unsure what to do next. The system monitors the user’s
behavior while navigating and reading Web pages, and concurrently evaluates
the links reachable from the current page. The system uses only implicit feed-
back. Thus, saving a page as a bookmark is taken as strong positive evidence for
the terms in the corresponding Web page. Links skipped are taken as negative
support for the information reachable from the link. Selected links can indicate
positive or negative evidence, depending on how much time the user spends on
the resulting page and whether or not the decision to leave a page quickly is later
reversed. Additionally, the evidence for user interest remains persistent across

308 USER INTERFACES AND VISUALIZATION

browsing sessions. Thus, a user who often reads kayaking pages is at another
time reading the home page of a professional contact and may be alerted to
the fact that the colleague’s personal interests page contains a link to a shared
hobby. The system uses a best-first search strategy and heuristics to determine
which pages to recommend most strongly.

A more user-directed approach to prefetching potentially relevant informa-
tion is seen in the Butterfly system {531]. This interface helps the user follow
a series of citation links from a given reference, an important information seek-
ing strategy [66]. The system automatically examines the document the user is
currently reading and prefetches the bibliographic citations it refers to. It also
retrieves lists of articles that cite the focus document. The underlying assump-
tion is that the services from which the citations are requested do not respond
immediately. Rather tkan making the user wait during the delay associated with
each request, the system handles many requests in parallel and the interface uses
graphics and animations to show the incrementally growing list of available ci-
tations. The system does not try to be clever about which cites to bring first;
rather the user can watch the ‘organically’ growing visualization of the document
and its citations, and based on what looks relevant, direct the system as to which
parts of the citation space to spend more time on.

10.7.4 Group Relevance Judgements

Recently there has been much interest in using relevance judgements from a
large number of different users to rate or rank information of general interest
[672]. Some variations of this social recommendation approach use only simi-
larity among relevance judgements by people with similar tastes, ignoring the
representation of the information being judged altogether. This has been found
highly effective for rating information in which taste plays a major role, such as
movie and music recommendations [720]. More recent work has combined group
relevance judgements with content information [64].

10.7.5 Pseudo-Relevance Feedback

At the far end of the system versus user feedback spectrum is what is informally
known as pseudo-relevance feedback. In this method, rather than relying on the
user to choose the top k relevant documents, the system simply assumes that its
top-ranked documents are relevant, and uses these documents to augment the
query with a relevance feedback ranking algorithm. This procedure has been
found to be highly effective in some settings [760, 465, 12], most likely those in
which the original query statement is long and precise. An intriguing extension
to this idea is to use the output of clustering of retrieval results as the input to
a relevance feedback mechanism, either by having the user or the system select
the cluster to be used [359], but this idea has not yet been evaluated.

INTERFACE SUPPORT FOR THE SEARCH PROCESS 309
10.8 Interface Support for the Search Process

The user interface designer must make decisions about how to arrange various
kinds of information on the computer screen and how to structure the possi-
ble sequences of interactions. This design problem is especially daunting for
a complex activity like information access. In this section we discuss design
choices surrounding the layout of information within complex information sys-
tems, and illustrate the ideas with examples of existing interfaces. We begin
with a discussion of very simple search interfaces, those used for string search
in ‘find’ operations, and then progress to multiwindow interfaces and sophisti-
cated workspaces. This is followed by a discussion of the integration of scanning,
selecting, and querying within information access interfaces and concludes with
interface support for retaining the history of the search process.

10.8.1 Interfaces for String Matching

A common simple search need is that of the ‘find’ operation, typically run over
the contents of a document that is currently being viewed. Usually this function
does not produce ranked output, nor allow Boolean combinations of terms; the
main operation is a simple string match (without regular expression capabilities).
Typically a special purpose search window is created, containing a few simple
controls (e.g., case-sensitivity. search forward or backward). The user types the
query string into an entry form and string matches are highlighted in the target
document (see Figure 10.26).

The next degree of complexity is the ‘find’ function for searching across
small collections, such as the files on a personal computer’s hard disk, or the
history list of a Web browser. This type of function is also usually implemented
as a simple string match. Again, the controls and parameter settings are shown
at the top of a special purpose search window and the various options are set via
checkboxes and entry forms. The difference from the previous example is that a
results list is shown within the search interface itself (see Figure 10.27).

A common problem arises even in these very simple interfaces. An ambigu-
ous state occurs in which the results for an earlier search are shown while the
user is entering a new query or modifying the previous one. If the user types in

&

Find what: linformation

I Machgase [T W € Down

B R A

Figure 10.26 An example of a simple interface for string matching, from Netscape
Communicator 4.05.

310 USER INTERFACES AND VISUALIZATION

_ﬂ ! Cérﬁaiﬁs

3 ’bérl;eley —
R ,

Tile 0t 0o | Fist Visted | Last Vistad | Expirati

Searching UC ... http://www-resource.. 7/7/1938 ... 1 hours ago 8/27/199...
The UC Berkel.. http://library.berkele.. 1 hours ago 1 hours ago 8/27/198..
Berkeley Pledge http://www.urel.berk... 1 hours ago 1 hours ago 8/27/199...
1998 Berkeleya... http://www.urelberk... 1 hours ago 1 hours ago 8/27/199...
Berkeleyan Arc... http://www.urel.berk... 1 hours ago 1 hours ago 8/27/199...
Berkeleyan / Pr... http://www.urel.berk... 1 hours ago 1 hours ago 8/27/199...
Berkeleyan / Pr... http://www.urel.berk... 1 hours ago 1 hours ago 8/27/199...
02-25-98 Berkel... http://www.urel.berk... 2 hows ago 1 hours ago 8/27/199..
UC Berkeley Dir... http://www-iesource... 7/22/199... 1 hours ago 8/27/199..
UC Berkeley Dir... http:2/www.berkeley 1 hows aqo 1 hours ago 8/27/199...

| o)) o) o) o) i

Figure 10.27 An example of an string matching over a list, in this case, a history
of recently viewed Web pages, from Netscape Communicator 4.05.

new terms and but then does not activate the search, the interface takes on a
potentially misleading state, since a user could erroneously assume that the old
search hits shown correspond to the newly typed-in query. One solution for this
problem is to clear the results list as soon as the user begins to type in a new
query.

However, the user may want to refer to terms shown in the search results to
help reformulate the query, or may decide not to issue the new query and instead
continue with the previous results. These goals would be hampered by erasing
the current result set as soon as the new query is typed. Another solution is to
bring up a new window for every new query. However, this requires the user to
execute an additional command and can lead to a proliferation of windows. A
third, probably more workable solution, is to automatically ‘stack’ the queries
and results lists in a compact format and allow the user to move back and forth
among the stacked up prior searches.

Simple interfaces like these can be augmented with functionality that can
greatly aid initial query formulation. Spelling errors are a major cause of void
result sets.. A spell-checking function that suggests alternatives for query terms
that have low frequency in the collection might be useful at this stage. Another
option is to suggest thesaurus terms associated with the query terms at the time
the query terms are entered. Usually these kinds of information are shown after
the query is entered and documents have been retrieved, but an alternative is to
provide this information as the user enters the query, in a form of query preview.

INTERFACE SUPPORT FOR THE SEARCH PROCESS 311

10.8.2 Window Management

For search tasks more complex than the simple string matching find operations
described above, the interface designer must decide how to lay out the various
choices and information displays within the interface.

As discussed above, traditional bibliographic search systems use TTY-
based command-line interfaces or menus. When the system responds to a com-
mand, the new results screen obliterates the contents of the one before it, requir-
ing the user to remember the context. For example, the user can usually see only
one level of a subject hierarchy at a time, and must leave the subject view in
order to see query view or the document view. The main design choices in such
a system are in the command or menu structure, and the order of presentation
of the available options.

In modern graphical interfaces, the windowing system can be used to divide
functionality into different, simultaneously displayed views [582]. In information
access systems, it is often useful to link the information from one window to the
information in another, for example, linking documents to their position in a ta-
ble of contents, as seen in SuperBook. Users can also use the selection to cut and
paste information from one window into another, for example, copy a word from
a display of thesaurus terms and paste the word into the query specification form.

When arranging information within windows, the designer must choose be-
tween a monolithic display, in which all the windows are laid out in predefined
positions and are all simultaneously viewable, tiled windows, and -overlapping
windows. User studies have been conducted comparing these options when ap-
plied to various tasks {725, 96]. Usually the results of these studies depend on the
domain in which the interface is used, and no clear guidelines have yet emerged
for information access interfaces.

The monolithic interface has several advantages. It allows the designer
to control the organization of the various options, makes all the information
simultaneously viewable, and places the features in familiar positions, making
them easier to find. But monolithic interfaces have disadvantages as well. They
often work best if occupying the full viewing screen, and the number of views is
inherently limited by the amount of room available on thé screen (as opposed to
overlapping windows which allow display of more information than can fit on the
screen at once). Many modern work-intensive applications adopt a monolithic
design, but this can hamper the integration of information access with other work
processes such as text editing and data analysis. Plaisant et al [644] discuss
issues relating to coordinating information across different windows to providing
overview plus details.

A problem for any information access interface is an inherent limit in how
many kinds of information can be shown at once. Information access systems
must always reserve room for a text display area, and this must take up a signif-
icant proportion of screen space in order for the text to be legible. A tool within
a paint program, for example, can be made quite small while nevertheless re-
maining recognizable and usable. For legibility reasons, it is difficult to compress
many of the information displays needed for an information access system (such

312 USER INTERFACES AND VISUALIZATION

as lists of thesaurus terms, query specifications, and lists of saved titles) in this
manner. Good layout, graphics, and font design can improve the situation; for
example, Web search results can look radically different depending on spacing,
font, and other small touches [580].

Overlapping windows provide flexibility in arrangement, but can quickly
lead to a crowded, disorganized display. Researchers have observed that much
user activity is characterized by movement from one set of functionally related
windows to another. Bannon et al. [54] define the notion of a workspace — the
grouping together of sets of windows known to be functionally related to some
activity or goal — arguing that this kind of organization more closely matches
users’ goal structure than individual windows [96]. Card et al. [140] also found
that window usage could be categorized according to a ‘working set’ model. They
looked at the relationship between the demands of the task and the number of
windows in use, and found the largest number of individual windows were in use
when users transitioned from one task to another.

Based on these and other observations, Henderson and Card [420] built a
system intended to make it casier for users to move between ‘multiple virtual
workspaces’ [96]. The system uses a 3D spatial metaphor, where each workspace
is a ‘room,” and users transition between workspaces by ‘moving’ through virtual
doors. By ‘traveling’ from one room to the next, users can change from one work
context to another. In each work context, the application programs and data
files that are associated with that work context are visible and readily available
for reopening and perusal. The workspace notion as developed by Card et al.
also emphasizes the importance of having sessions persist across time. The user
should be able to leave a room dedicated to some task, work on another task,
and three days later return to the first room and see all of the applications still in
the same state as before. This notion of bundling applications and data together
for each task has since been widely adopted by window manager software in -
workstation operating system interfaces.

Elastic windows [428] is an extension to the workspace or rooms notion to
the organization of 2D tiled windows. The main idea is to make the transition
easier from one role or task to another, by adjusting how much of the screen real
estate is consumed by the current role. The user can enlarge an entire group of
windows with a simple gesture, and this resizing automatically causes the rest of
the workspaces to reduce in size so they all still fit on the screen without overlap.

10.8.3 Example Systems

The following sections describe the information layout and management ap-
proaches taken by several modern information access interfaces.

The InfoGrid Layout

The InfoGrid system [667] is a typical example of a monolithic layout for an
information access interface. The layout assumes a large display is available

INTERFACE SUPPORT FOR THE SEARCH PROCESS 313

Search Parameters Property Sheet Control Panel

]

| TOC Subset
g Table of :
& | Thumbnail Document Contents |
g Images Text Document
g Text
O

| Search Parameters
Holding Area Search Paths 1

Figure 10.28 Diagrams of monolithic layouts for information access interfaces.

and is divided into a left-hand and right-hand side (see Figure 10.28). The left-
hand side is further subdivided into an area at the top that contains structured
entry forms for specifying the properties of a query, a column of iconic controls
lining the left side, and an area for retaining documents of interest along the
bottom. The main central area is used for the viewing of retrieval results, either
as thumbnail representations of the original documents, or derived organizations
of the documents, such as Scatter/Gather-style cluster results. Users can select
documents from this area and store them in the holding area below or view
them in the right-hand side. Most of the right-hand side of the display is used for
viewing selected documents, with the upper portion showing metadata associated
with the selected document. The area below the document display is intended
to show a graphical history of earlier interactions.

Designers must make decisions about which kinds of information to show
in the primary view(s). If InfoGrid were used on a smaller display, either the
document viewing area or the retrieval results viewing area would probably have
to be shown via a pop-up overlapping window; otherwise the user would have
to toggle between the two views. If the system were to suggest terms for rele-
vance feedback, one of the existing views would have to be supplanted with this
information or a pop-up window would have to be used to display the candidate
terms. The system does not provide detailed information for source selection,
although this could be achieved in a very simple way with a pop-up menu of
choices from the control panel.

The SuperBook Layout

The layout of the InfoGrid is quite similar to that of SuperBook (see section
10.6). The main difference is that SuperBook retains the table of contents-like
display in the main left-hand pane, along with indicators of how many documents
containing search hits occur in each Jevel of the outline. Like InfoGrid, the
main pane of the right-hand side is used to display selected documents. Query

314 USER INTERFACES AND VISUALIZATION

formulation is done just below the table of contents view (although in earlier
versions this appeared in a separate window). Terms related to the user’s query
are shown in this window as well. Large images appear in pop-up overlapping
windows.)

The SuperBook layout is the result of several cycles of iterative design
(481]. Earlier versions used overlapping windows instead of a monolithic layout,
allowing users to sweep out a rectangular area on the screen in order to create a
new text box. This new text box had its own set of buttons that allowed users to
jump to occurrences of highlighted words in other documents or to the table of
contents. SuperBook was redesigned after noting results of experimental studies
[350, 532] showing that users can be more efficient if given fewer, well chosen
interaction paths, rather than allowing wide latitude (A recent study of auditory
interfaces found that although users were more efficient with a more flexible
interface, they nevertheless preferred the more rigid, predictable interface [801)).
The designers also took careful note of log files of user interactions. Before the
redesign, users had to choose to view the overall frequency of a hit, move the
mouse to the table of contents window, click the button and wait for the results
to be updated. Since this pattern was observed to occur quite frequently, in the
next version of the interface, the system was redesigned to automatically perform
this sequence of actions immediately after a search was run.

The SuperBook designers also attempted a redesign to allow the interface
to fit into smaller displays. The redesign made use of small, overlapping windows.
Some of the interaction sequences that were found useful in this more constrained
environment were integrated into later designs for large monolithic displays.

The DLITE Interface

The DLITE system (193, 192} makes a number of interesting design choices. It
splits functionality into two parts: control of the search process and display of
results . The control portion is a graphical direct manipulation display with an-
imation (see Figurel0.29). Queries, sources, documents, and groups of retrieved
documents are represented as graphical objects. The user creates a query by
filling out the editable fields within a query constructor object. The system
manufactures a query object, which is represented by a small icon which can be
dragged and dropped onto iconic representations of collections or search services.
If a service is active, it responds by creating an empty results set object and at-
taching the query to this. A set of retrieval results is represented as a circular
pool, and documents within the result set are represented as icons distributed
along the perimeter of the pool. Documents can be dragged out of the results
set pool and dropped into other services, such as a document summarizer or a
language translator. Meanwhile, the user can make a copy of the query icon and
drop it onto another search service. Placing the mouse over the iconic represen-
tation of the query causes a ‘tool-tips’ window to pop up to show the contents
of the underlying query. Queries can be stored and reused at a later time, thus
facilitating retention of previously successful search strategies.

INTERFACE SUPPORT FOR THE SEARCH PROCESS 315

Inter3ib Collection Frocessor

ubj. l
Author[G7 a5 and Jeffries
Tide ’
Create Query I
')
»
S
Relevant Articles

Figure 10.29 The DLITE interface {193].

A flexible interface architecture frees the user from the restriction of a rigid
order of commands. On the other hand, as seen in the SuperBook discussion,
such an architecture must provide guidelines, to help get the user started, give
hints about valid ways to proceed, and prevent the user from making errors. The
graphical portion of the DLITE interface makes liberal use of animation to help
guide the user. For example, if the user attempts to drop a query in the document
summarizer icon — an illegal operation — rather than failing and giving the user
an accusatory error message [185], the system takes control of the object being
dropped, refusing to let it be placed on the representation for the target appli-
cation, and moves the object left, right, and left again, mimicking a ‘shake-the-
head-no’ gesture. Animation is also used to help the user understand the state of
the system, for example, in showing the progress of the retrieval of search results
by moving the result set object away from the service from which it was invoked.

DLITE uses a separate Web browser window for the display of detailed
information about the retrieved documents, such as their bibliographic citations
and their full text. The browser window is also used to show Scatter/Gather-
style cluster results and to allow users to select documents for relevance feedback.
Earlier designs of the system attempted to incorporate text display into the di-
rect manipulation portion, but this was found to be infeasible because of the
space required [192]. Thus, DLITE separates the control portion of the infor-
mation access process from the scanning and reading portion. This separation
allows for reusable query construction and service selection, while at the same
time allowing for a legible view of documents and relationships among retrieved
documents. The selection in the display view is linked to the graphical control
portion, so a document viewed in the display could be used as part of a query
in a query constructor.’

316 USER INTERFACES AND VISUALIZATION

DLITE also incorporates the notion of a workspace, or ‘workcenter,’ as it
is known in this system. Different workspaces are created for different kinds of
tasks. For example, a workspace for buying computer software can be equipped
with source icons representing good sources of reviews of computer software,
good Web sites to search for price information and link to the user’s online
credit service.

The SketchTrieve Interface

The guiding principle behind the SketchTrieve interface [365)] is the depiction
of information access as an informal process, in which half-finished ideas and
partly explored paths can be retained for later use, saved and brought back to
compare to later interactions, and the results can be combined via operations on
graphical objects and connectors between them. It has been observed [584, 722]
that users use the physical layout of information within a spreadsheet to organize
information. This idea motivates the design of SketchTrieve, which allows users
to arrange retrieval results in a side-by-side manner to facilitate comparison and
recombination (see Figure 10.30).

The notion of a canvas or workspace for the retention of the previous con-
text should be adopted more widely in future. Many issues are not easily solved,
such as how to show the results of a set of interrelated queries, with minor
modifications based on query expansion, relevance feedback, and other forms of
modification. One idea is to show sets of related retrieval results as a stack of

{9 Jobn, this is work I'm doing on
-==q the Forbes project. I'm having

Rex Hartsan Philip D Gt
Gerhard Fischer Andreas
Raymonde Guindon
Judith Rertman Olson Gary
Robert Adamy Duisberg
John B Smith Dana Kay
Stephen J Payne T R G

o e

Figure 10.30 The SketchTrieve interface [365).

INTERFACE SUPPORT FOR THE SEARCH PROCESS 317

cards within a folder and allow the user to extract subsets of the cards and view
them side by side, as is done in SketchTrieve, or compare them via a difference
operation.

10.8.4 Examples of Poor Use of Overlapping Windows

Sometimes conversion from a command-line-based interface to a graphical dis-
play can cause problems. Hancock-Beaulieu et al. [337] describe poor design de-
cisions made in an overlapping windows display for a bibliographic system. (An
improvement was found with a later redesign of the system that used a mono-
lithic interface [336].) Problems can also occur when designers make a ‘literal’
transformation from a TTY interface to a graphical interface. The consequences
can be seen in the current LEXIS-NEXIS interface, which does not make use of
the fact that window systems allow the user to view different kinds of informa-
tion simultaneously. Instead, despite the fact that it occupies the entire screen,
the interface does not retain window context when the user switches from one
function to another. For example, viewing a small amount of metadata about
a list of retrieved titles causes the list of results to disappear, rather than over-
laying the information with a pop-up window or rearranging the available space
with resizable tiles. Furthermore, this metadata is rendered in poorly-formatted
ASCII instead of using the bit-map capabilities of a graphical interface. When a
user opts to see the full text view of a document, it is shown in a small space, a
few paragraphs at a time, instead of expanding to fill the entire available space.

10.8.5 Retaining Search History

Section 10.3 discusses information seeking strategies and behaviors that have
been observed by researchers in the field. This discussion suggests that the user
interface should show what the available choices are at any given point, as well
as what moves have been made in the past, short-term tactics as well as longer-
term strategies, and allow the user to annotate the choices made and information
found along the way. Users should be able to bundle search sessions as well as
save individual portions of a given search session, and flexibly access and modify
each. There is also increasing interest in incorporating personal preference and
usage information both into formulation of queries and use of the results of search
[277].

For the most part these strategies are not supported well in current user
interfaces; however some mechanisms have been introduced that begin to address
these needs. In particular, mechanisms to retain prior history of the search
are useful for these tasks. Some kind of history mechanism has been made
available in most search systems in the past. Usually these consist of a list
of the commands executed earlier. More recently, graphical history has been
introduced, that allows tracking of commands and results as well. Kim and Hirtle

318 USER INTERFACES AND VISUALIZATION

Slide sorter

i
p -2

Sapply Foroent egra
1

Figure 10.31 The VISAGE interaction history visualization [685].

[440] present a summary of graphical history presentation mechanisms. Recently,
a graphical interface that displays Web page access history in a hierarchical
structure was found to require fewer page accesses and require less time when
returning to pages already visited [370].

An innovation of particular interest for information access interfaces is
exemplified by the saving of state in miniature form in a ‘slide sorter’ view as
exercised by the VISAGE system for information visualization [685] (see Figure
10.31). The VISAGE application has the added advantage of being visual in
nature and so individual states are easier to recognize. Although intended to be
used as a presentation creation facility, this interface should also be useful for
retaining search action history.

10.8.6 Integrating Scanning, Selection, and Querying

User interfaces for information access in general do not do a good job of sup-
porting strategies, or even of sequences of movements from one operation to the
next. Even something as simple as taking the output of retrieval results from
one query and using them as input to another query executed in a later search
session is not well supported in most interfaces.

Hertzum and Frokjaer [368] found that users preferred an integration of
scanning and query specification in their user interfaces. They did not, however,
observe better results with such interactions. They hypothesized that if interac-
tions are too unrestricted this can lead to erroneous or wasteful behavior, and
interaction between two different modes requires more guidance. This suggests
that more flexibility is needed, but within constraints (this argument was also
made in the discussion of the SuperBook system in section 10.6).

There are exceptions. The new Web version of the Melyvl system provides
ways to take the output of one query and modify it later for re-execution (see
Figure 10.32). The workspace-based systems such as DLITE and Rooms allow
storage and reuse of previous state. However, these systems do not integrate
the general search process well with scanning and selection of information from
auxiliary structures. Scanning, selection, and querying needs to be better inte-
grated in general. This discussion will conclude with an example of an interface
that does attempt to tightly couple querying and browsing.

INTERFACE SUPPORT FOR THE SEARCH PROCESS 319

p://192.35 215.185/mw/mwegi mb#LB

iPersonal Proftie: Off

[[search Database | Items | Suggested Action

;igpemmleu«hm Tvn' d o cc 1330 ﬁ%mm Fewer

| s At e G 3|] o

@ .:;'_;:‘:&l:mmon.dlﬁ ol it gcc ;4 !mlﬁndmm
Item display: ISnorl s; [10 per page E

Send questions, comments, or suggestions to melvyl@www.melvyl ucop.edu
Melvyl® is a registered trademark of The Regents of the University of California

Figure 10.32 A view of query history revision in the Web-based version of the Melvyl
bibliographic catalog. Copyright (©), The Regents of the University of California.

The Cat-a-Cone interface integrates querying and browsing of very large
category hierarchies with their associated text collections. The prototype system
uses 3D+animation interface components from the Information Visualizer [144],
applied in a novel way, to support browsing and search of text collections and
their category hierarchies. See Figure 10.33. A key component of the interface is
the separation of the graphical representation of the category hierarchy from the
graphical representation of the documents. This separation allows for a fluid,
flexible interaction between browsing and search, and between categories and
documents. It also provides a mechanism by which a set of categories associated
with a document can be viewed along with their hierarchical context.

Another key component of the design is assignment of first-class status
to the representation of text content. The retrieved documents are stored in
a 3D+animation book representation [144] that allows for compact display of
moderate numbers of documents. Associated with each retrieved document is a
page of links to the category hierarchy and a page of text showing the document
contents. The user can ‘ruffie’ the pages of the book of retrieval results and see
corresponding changes in the category hierarchy, which is also represented in
3D+animation. All and only those parts of the category space that reflect the
semantics of the retrieved document are shown with the document.

The system allows for several different kinds of starting points. Users can
start by typing in a name of a category and seeing which parts of the category
hierarchy match it. For example, Figure 10.34 shows the results of searching on

320 USER INTERFACES AND VISUALIZATION

" ' S L ey
R i TITLF ¢ ABNTRACT)
n_‘_" FEAR OF SECUBRENCE, ‘E | Foar of recurrence b buce ot thehourt ||
N BRFANT-CONNERVENGS . of 'y
1 AN THE TRADE~OFP Taviriong ssniicunn)) enatihuse
- BYPOTHERIS sdvecating a lnes vy -
f Mlh-mﬂz y
MeSH TERMS i o ol
sl oF the breasths excieed. To
B Heapheaass o 'w..a“-'an-wym:b -
(B} bt cnararving iniers satinn, pativnte
Hsnons. Somntal) E :mww..:.n'u:.m?m
m H | v rr i eat- o)
E g kbt
%
v

Figure 10.33 The Cat-a-Cone interface for integrating category and text scanning
and search [358].

‘Radiation’ over the MeSH terms in this subcollection. The word appears un-
der four main headings (Physical Sciences. Diseases, Diagnostics, and Biological
Sciences). The hierarchy immediately shows why ‘Radiation’ appears under Dis-
eases — as part of a subtree on occupational hazards. Now the user can select
one or more of these category labels as input to a query specification.

Another way the user can start is by simply typing in a free text query into
an entry label. This query is matched against the collection. Relevant documents
are retrieved and placed in the book format. When the user ‘opens’ the book to
a retrieved document, the parts of the category hierarchy that correspond to the
retrieved documents are shown in the hierarchical representation. Thus, multiple
intersecting categories can be shown simultaneously, in their hierarchical context.
Thus, this interface fluidly combines large, complex metadata, starting points,
scanning, and querying into one interface. The interface allows for a kind of
relevance feedback, by suggesting additional categories that are related to the
documents that have been retrieved. This interaction model is similar to that
proposed by [5].

Recall the evaluation of the Kohonen feature map representation discussed
in section 10.4. The experimenters found that some users expressed a desire
for a visible hierarchical organization, others wanted an ability to zoom in on
a subarea to get more detail, and some users disliked having to look through
the entire map to find a theme, desiring an alphabetical ordering instead. The
subjects liked the ease of heing able to jump from one area to another without

TRENDS AND RESEARCH ISSUES 321

Figure 10.34 An interface for a starting point for searching over category labels
[358].

having to back up (as is required in Yahoo!) and liked the fact that the maps
have varying ievels of granularity.

These results all support the design decisions made in the Cat-a-Cone.
Hierarchical representation of term meanings is supported, so users can choose
which level of description is meaningful to them. Furthermore, different levels
of description can be viewed simultaneously, so more familiar concepts can be
viewed in more detail, and less familiar at a more general level. An alphabetical
ordering of the categories coupled with a regular expression search mechanism
allows for straightforward location of categorv labels. Retrieved documents are
represented as first-class objects. so full text is visible. but in a compact form.
Category labels are disambiguated by their ancestor/descendant /sibling repre-
sentation. Users can jump easily from one category to another and can in addi-
tion query on multiple categories simultanecusly (something that is not a natural
feature of the maps). The Cat-a-Cone has several additional advantages as well,
such as allowing a document to be placed at the intersection of several categories,
and explicitly linking document contents with the category representation.

10.9 Trends and Research Issues

The importance of human computer interaction is receiving increasing recogni-
tion within the field of computer science [587]. As should be evident from the

322 USER INTERFACES AND VISUALIZATION

contents of this chapter, the role of the user interface in the information access
process has only recently begun to receive the attention it deserves. Research
in this area can be expected to increase rapidly, primarily because of the rise
of the Web. The Web has suddenly made vast quantities of information avail-
able globally, leading to an increase in interest in the problem of information
access. This has lead to the creation of new information access paradigms, such
as the innovative use of relevance feedback seen in the Amazon.com interface.
Because the Web provides a platform-independent user interface, investment in
better user interface design can have an impact on a larger user population than
before.

Another trend that can be anticipated is an amplified interest in organi-
zation and search over personal information collections. Many researchers are
proposing that in future a person’s entire life will be recorded using various me-
dia, from birth to death. One motivation for this scenario is to enable searching
over everything a person has ever read or written. Another motivation is to
allow for searching using contextual clues, such as ‘find the article I was reading
in the meeting I had on May 1st with Pam and Hal’. If this idea is pursued,
it will require new, more sophisticated interfaces for searching and organizing a
huge collection of personal information.

There is also increasing interest in leveraging the behavior of individuals
and groups, both for rating and assessing the quality of information items, and for
suggesting starting points for search within information spaces. -Recommender
systems can be expected to increase in prevalence and diversity. User interfaces
will be needed to guide users to appropriate recommended items based on their
information needs.

The field of information visualization needs some new ideas about how to
display large, abstract information spaces intuitively. Until this happens, the
role of visualization in information access will probably be primarily confined
to providing thematic overviews of topic collections and displaying large cate-
gory hierarchies dynamically. Breakthroughs in information visualization can be
expected to have a strong impact on information access systems.

10.10 Bibliographic Discussion

The field of human-computer interaction is a broad one, and this chapter touches
on only a small subset of pertinent issues. For further information, see the
excellent texts on user interface design by Shneiderman [725], information seeking
behavior by Marchionini [542], and digital libraries by Lesk [501]. An excellent
book on visual design is that of Mullet and Sano [580]. Tufte has written thought-
provoking and visually engaging books on the power of information visualization
[769, 770} and a collection of papers on information visualization has been edited
by Card et al. [141].

This chapter has discussed many ideas for improving the human-computer
interaction experience for information seekers. This is the most rapidly

BIBLIOGRAPHIC DISCUSSION 323

developing area of information access today, and improvements in the interface
are likely to lead the way toward better search results and better-enabled infor-
mation creators and users. Research in the area of hurnan-computer interaction
is difficult because the field is relatively new. and because it can be difficult to
obtain strong results when running user studies. These challenges should simply
encourage those who really want to influence the information access systems of
tomorrow.

Acknowledgements

The author gratefully acknowledges the generous and helpful comments on the
contents of this chapter by Gary Marchionini and Ben Shneiderman, the excellent
administrative assistance of Barbara Goto, and the great faith and patience of
Ricardo Baeza-Yates and Berthier Ribeiro-Neto.

Chapter 11

Multimedia IR: Models and
Languages

by Elisa Bertino, Barbara Catania,
and Elena Ferrari

11.1 Introduction

The need for an integrated management for multimedia data is rapidly growing
in several application environments such as offices, CAD /CAM applications,
and medical applications. For this reason, multimedia information systems are
widely recognized to be one of the most promising fields in the area of information
management.

The most important characteristic of a multimedia information system is
the variety of data it must be able to support. Multimedia systems must have
the capability to store, retrieve, transport, and present data with very hetero-
geneous characteristics such as text, images (both still and moving), graphs,
and sound. For this reason, the development of a multimedia system is con-
siderably more complex than a traditional information system. Conventional
systems only deal with simple data types, such as strings or integers. On the
contrary, the underlying data model, the query language, and the access and
storage mechanisms of a multimedia system must be able to support objects
with a very complex structure. The need then arises for developing Multimedia
Information Retrieval (Multimedia IR for short) systems specifically for handling
multimedia data. Traditional IR systems (see Chapter 2) only deal with textual,
unstructured data; therefore, they are unable to support the mix of structured
and unstructured data, and different kinds of media, typical of a Multimedia
IR system. For instance, a traditional IR system does not support metadata
information such as that provided by database schema, which is a fundamen-
tal component in a database management system (DBMS). On the other hand,
Multimedia IR systems require some form of database schema because several
multimedia applications need to structure their data at least partially. However,
the notion of schema may need to be weakened with respect to the traditional
notion to ensure a higher degree of flexibility in structuring data. Moreover,

325

326 MULTIMEDIA IR: MODELS AND LANGUAGES

a Muliimedia IR system requires handling metadata which is crucial for data
retrieval. whereas traditional IR systems do not have such requirement.

The architecture of a Multimedia IR system depends on two main factors:
first. the peculiar characteristics of multimedia data, and second, the kinds of
operations to be performed on such data. In what follows, we briefly deal with
both these aspects.

Data Modeling

A Multimedia IR system should be able to represent and store multimedia objects
in a way that ensures their fast retrieval. The system should be therefore able to
deal with different kinds of media and with semi-structured data. i.e.. data whose
structure may not match. or only partially match. the structure prescribed by
the data schema. In order to represent semi-structured data. the system must
typically extract some features from the multimedia objects. A related issue is
how these features are extracted and efficiently maintained by the system.

Data Retrievai

The main goal of a Multimedia IR system is to efficiently perform retrieval, based
on user requests, exploiting not only data attributes, as in traditional DBMSs,
but also the content of multimedia objects. This poses several interesting chal-
lenges. due to the heterogeneity of data. the fuzziness of information, the loss of
information in the creation of indexes, and the need of an interactive refinement
of the query result. Data retrieval relies on the following basic steps:

(1) Query specification. In this step. the user specifies the request. The
query interface should allow the user to express fuzzy predicates for proxim-
ity searches (for example. ‘Find all images similar to a car’), content-based
predicates (for example. ‘Find multimedia objects containing an apple’),
conventional predicates on the object attributes (for example, conditions
on the attribute “color’ of an image. such as ‘Find all red images’), and
structural predicates (for example, 'Find all multimedia objects containing
a video clip’).

(2) Query processing and optimization. Similarly to traditional systems,
the query is parsed and compiled into an internal form. In generating this
internal representation, the query is also optimized, choosing the best eval-
uation plan. Note that, due to the presence of fuzzy terms. content-based
predicates, and structural predicates, query processing is a very complex
activity. A great amount of work has been done on query processing both in
traditional [402] and spatial databases [247. 82. 118, 361, 623]. However,
little work has been done on query processing strategies for multimedia
databases. The main problem is the heterogeneity of data: different query
processing strategies. one for each data type. should be combined together
in some way.

INTRODUCTION 327

(3) Query answer. The retrieved objects are returned to the user in decreas-
ing order of relevance. Relevance is measured as a distance function from
the query object to the stored ones.

(4) Query iteration. In traditional DBMSs, the query process ends when the
system returns the answer to the user. In a Multimedia IR system, due
to the inevitable lack of precision in the user request, the query execution
is iterated until the user is satisfied. At each iteration the user supplies
the system with additional information by which the request is refined,
reducing or increasing the number of returned answers.

From the previous discussion it follows that a Multimedia IR system differs
from a traditional IR system in two main aspects. First, the structure of multi-
media objects is more complex than the structure of typical textual data, handled
by traditional IR systems. This complexity requires the integration of traditional
IR technology with the techrology of multimedia database management systems
to adequately represent, manage, and store multimedia objects. Note that the
use of a DBMS also provides update functionalities and transaction management
which are in general not covered by typical IR systems. Second, object retrieval
is mainly based on a similarity approach. Moreover, the objects retrieved by
a query are usually returned to the user in a ranked form. These aspects are
successfully handled by IR techniques (see Chapter 2). However, IR systems
have initially been developed to support libraries of articles, journals, and en-
cyclopedic knowledge bases (see Chapter 2). In those systems, the fundamental
unit is the tertual document. Thus, the techniques developed for traditional IR
systems should be extended to deal with documents containing other media.

Multimedia IR systems should therefore combine both the DBMS and the
IR technology, to integrate the data modeling capabilities of DBMSs with the
advanced and similarity-based query capabilities of IR systems. The resulting
system will be able to answer attribute-based queries as well as content-based
queries. The whole architecture of the resulting system, in particular the query
optimizer, must take this aspect into account in order to efficiently support user
requests.

In this chapter, we discuss modeling and query language issues for multime-
dia objects, pointing out the differences and the analogies between a traditional
IR system and a multimedia one. Problems related to feature extraction and
searching are covered by Chapter 12.

The first part of the chapter is devoted to the presentation of the most
relevant models proposed in the literature for multimedia data, with particular
attention to commercial proposals.

The second part of the chapter investigates the peculiarities of multime-
dia query languages with respect to traditional ones. Then, as an example, two
different language proposals are presented. Also in this case, we focus on com-
mercial proposals and we discuss how the new standard SQL3 could be used to
deal with multimedia data retrieval.

328 MULTIMEDIA IR: MODELS AND LANGUAGES
11.2 Data Modeling

As we have already remarked, the complex nature of multimedia data may benefit
from the use of DBMS functions for data representation and querying. However,
the integration of multimedia data in a traditional DBMS is not an easy task.
Indeed, traditional DBMSs are mainly targeted to support conventional data.
Multimedia data is inherently different from conventional data. The main dif-
ference is that information about the content of multimedia data are usually not
encoded into attributes provided by the data schema (structured data). Rather,
text, image, video. and audio data are typically unstructured. Therefore, spe-
cific methods to identify and represent content features and semantic structures
of multimedia data are needed. Another distinguishing feature of multimedia
data is its large storage requirements. One single image usually requires several
Kbytes of storage, whereas a single second of video can require several Mbytes
of storage. Moreover, the content of multimedia data is difficult to analyze and
compare, in order to be actively used during query processing.

Addressing data modeling issues in the framework of Multimedia IR sys-
tems entails two main tasks. First, a data model should be defined by which the
user can specify the data to be stored into the system. Such.a data model should
have the ability of an integrated support for both conventional and multimedia
data types and should provide methods to analyze, retrieve, and query such
data. Second, the system should provide a model for the internal representation
of multimedia data. The definition of such a model is crucial for the efficiency
of query processing.

As far as the first aspect is concerned, a promising technology with respect
to the modeling requirements of multimedia data is the object-oriented one [89)].
The richness of the data model provided by OODBMSs makes them more suit-
able than relational DBMSs for modeling both multimedia data types and their
semantic relationships. Moreover, the concept of class can be naturally used to
define ad hoc data types for multimedia data in that a class is characterized
by both a set of attributes and a set of operations that can be performed on
these attributes. Classes can. moreover, be related into inheritance hierarchies,
thus allowing the definition of a multimedia class as a specialization of one or
more superclasses. However, the performance of OODBMs in terms of storage
techniques, query processing, and transaction management is not comparable to
that of relational DBMSs. Another drawback of OODBMs is that they are highly
non-standard. Indeed, even though a standard language has been defined by the
Object Database Management Group (ODMG), very few systems support it.

For all the above reasons, a lot of effort has been devoted to the extension
of the relational model with capabilities for modeling complex objects, typical of
the object-oriented context. The goal of the so-called object-relational technology
is to extend the relational model with the ability of representing complex data
types by maintaining, at the same time. the performance and the simplicity
of relational DBMSs and related query languages. The possibility of defining
abstract data types inside the relational model allows one to define ad hoc data
types for multimedia data. For instance. such data types can provide support for

DATA MODELING 329

content-dependent queries. In the following section, we will give some examples
of such extensions. 4

The second problem related to data modeling is how multimedia data are
represented inside the system. Due to the particular nature of multimedia data,
it is not sufficient to describe it through a set of attributes as usually done with
traditional data. Rather, some information should be extracted from the ob-
jects and used during query processing. The extracted information is typically
represented as a set of features: each multimedia object is therefore internally
represented as a list of features, each of which represents a point in a multi-
dimensional space. Multi-attribute access methods can then be used to index
and search for them (see Chapter 12). Features can be assigned to multimedia
objects either manually by the user, or automatically by the system. In general,
a hybrid approach is used, by which the system determines some of the values
and the user corrects or augments them. In both cases, values assigned to some
specific features, such as the shape of an image or the style of an audio object,
are assigned to the object by comparing the object with some previously classi-
fied objects. For instance, to establish whether an image represents a car or a
house, the shape of the image is compared with the shapes of already classified
cars and houses before taking a decision. Finally, it is important to recall that
feature extraction cannot be precise. Therefore, a weight is usually assigned to
each feature value representing the uncertainty of assigning such a value to that.
feature. For example, if we are 80% sure that a shape is a square, we can store
this value together with the recognized shape.

From the previous discussion, it follows that data modeling in a Multimedia
IR system is an articulated activity that must take into account both the complex
structure of data and the need of representing features extracted from multimedia
objects.

In the following, we give a brief overview of some proposals to model mul-
timedia data. We start by reviewing the support for multimedia data provided
by commercial DBMSs. Then, as an example of a research proposal, we survey
the data model developed in the context of the MULTOS project.

11.2.1 Multimedia Data Support in Commercial DBMSs

Most current relational DBMSs support variable-length data types which can be
used to represent multimedia data. The way these data are supported by com-
mercial DBMSs is mostly non-standard in that each DBMS vendor uses different
names for such data types and provides support for different operations on them.

For example, the Oracle DBMS provides the VARCHAR?2 data type to
represent variable length character strings. The maximum length of VARCHAR?2
data is 4000 bytes. The RAW and LONG RAW data types are used for data
that is not to be interpreted by Oracle. These data types can be used to store
graphics, sounds, or unstructured objects. LOB data types can be used to store
Large unstructured data OBjects up to four gigabytes in size. BLOBs are used
to store unstructured Binary Large OBjects. whereas CLOBs are used to store
Character Large OBject data.

330 MULTIMEDIA IR: MODELS AND LANGUAGES

The Sybase SQL server supports IMAGE and TEXT data types to store
images and unstructured text, respectively, and provides a limited set of func-
tions for their searching and manipulation.

However, the support providea by the above mentioned data types is very
limited in that the DBMS does not provide any interpretation of the data content.
Moreover, operations that can be performed on such data by means of the built-
in functions provided by the DBMS are very simple.

As we have already remarked, most commercial relational DBMSs vendors
are investing a lot of effort in extending the relational model with the capability
of modeling complex objects, typical of the object-oriented context. Such efforts
have given rise to the upcoming SQL3 standard. From a data modeling point of
view, the major improvement provided by SQL3 with respect to its predecessor
SQL-92, is the support for an extensible type system. Extensibility of the type
system is achieved by providing constructs to define user-dependent abstract
data types, in an object-oriented like manner. In SQL3, each type specification
consists of both attribute and function specifications. A strong form of encap-
sulation is provided, in that attribute values can only be accessed by using some
system functions. Moreover, user-defined functions can be either visible from
any object or only visible in the object they refer to. Both single and multiple
inheritance can be defined among user-defined types and dynamic late binding
is provided [89].

SQL3 also provides three types of collection data types: sets, multisets, and
lists. The elements of a collection must have compatible types. Several system-
defined operations are provided to deal with collections. Besides the definition
of user-dependent abstract data types, SQL3 provides a restricted form of ob ject
identifier that supports sharing and avoids data duplication.

Although SQL3 has not yet been officially published, most commercial
products have already implemented their proprietary versions of SQL3. An ex-
ample in such direction is the data cartridges provided by Oracle for multimedia
data handling, or the data blades supported by Illustra.t

Oracle provides data cartridges for text, spatial data, image, audio and
video data. To give a concrete example, Oracle8 provides a ConText cartridge,
which is a text management solution combining data management capabilities of
a traditional DBMS with advanced text retrieval and natural-language process
technology. The ConText cartridge supports the most popular document for-
mats, including ASCII, MS Word, and HTML. One of the most relevant feature
of the ConText cartridge is its ability to find documents about a specific topic
(thus providing a form of content-based retrieval). Content-based queries on text
documents can be combined with traditional queries in the same SQL statement
and can be efficiently executed due to the use of indexing techniques specific for
texts. Such techniques are based on the notion of inverted files (see Chapter 8)
which map a given word to the documents containing it, thus allowing a fast
retrieval of all the documents containing a particular word.

t Illustra was acquired by Informix in 1995.

DATA MODELING 331

Tllustra provides 3D and 2D spatial data blades for modeling spatial data.
The supported data types include boxes, vectors, quadrangles. etc.. and ex-
amples of supported operations are INTERSECT. CONTAINS, OVERLAPS,
CENTER, and so on. Spatial data blades also implement R-trees for performing
efficient spatial queries [330. 717]. The text data blade provides data types for
representing unstructured text and performing content-based queries. For ex-
ample, the method ContainWords can be used to search for all the documents
containing a particular word. Moreover, Illustra supports a data blade which
can be used to query images by content.

The object-relational technology and its extensive type system is now start-
ing to be widely used both in industrial and research projects. An example of
this trend is the La Scala archive project, currently under development at the
Laboratorio di Informatica Musicale of the University of Milano [254]. The goal
of this project is the development of the multimedia archive of Teatro alla Scala,
one of the best known musical temples of the world, using the Oracle technol-
ogy and the related data cartridges. The system is organized around La Scala
nights. Each night encompasses the phonic items, score, and other graphical
and video items related to the performance. When a new performance has to be
prepared, the musicians can easily access all the materials (such as CD-ROMs,
video, photos, and scores) of previous editions of the same performance. Ac-
cessing such information has required the development of ad hoc cartridges to
represent and query non-conventional data. For instance, we are currently de-
veloping a data cartridge that allows content-based queries on music scores. We
apply pattern n{atching techniques to music scores to enable the user to sing a
few bars into a microphone linked to the computer and see all the music scores
containing a piece of music close to the one being sung. Users can then view
the retrieved musical graphic scores, or excerpts from them, and simultaneously
play the corresponding music.

As an example of a data model suitable for a multimedia environment,
in the following we consider the data model developed in the context of the
MULTOS project [759].

11.2.2 The MULTOS Data Model

MULTOS (MULTimedia Office Server) is a multimedia document} server with
advanced document retrieval capabilities, developed in the context of an ESPRIT
project in the area of Office Systems [759].

MULTOS is based on a client/server architecture. Three different types of
document servers are supported: current servers, dynamic servers, and archive
servers, which differ in storage capacity and document retrieval speed. Such
servers support filing and retrieval of multimedia objects based on document
collections, document types, document attributes, document text, and images.

1 As MULTOS deals with office services, in the following we use the words object and document
as synonymous.

332 MULTIMEDIA IR: MODELS AND LANGUAGES

The MULTOS data model allows the representation of high level concepts
present in the documents contained in the database, the grouping of documents
into classes of documents having similar content and structure, and the expres-
sion of conditions on free text.

Each document is described by a logical structure, a layout structure,
and a conceptual structure. The logical structure determines arrangements of
logical document components (e.g., title, introduction, chapter, section, etc.).
The layout structure deals with the layout of the document content and it con-
tains components such as pages, frames, etc. The conceptual structure allows a
semantic-oriented description of the document content as opposed to the syntax-
oriented description provided by the logical and layout structure. The conceptual
structure has been added to provide support for document retrieval by content.
MULTOS provides a formal model, based on a data structuring tool available in
semantic data models, to define the document conceptual structure. The logical
and layout structures are defined according to the ODA document representation
[398].

Documents having similar conceptual structures are grouped into concep-
tual types. In order to handle types in an effective manner, conceptual types afe
maintained in a hierarchy of generalization, where a subtype inherits from its
supertypes the conceptual structure and can then refine it. Types can be strong
or weak. A strong type completely specifies the structure of its instances. A
weak type, on the other hand, partially specifies the structure of its instances.
Moreover, components of unspecified type (called spring component types) can
appear in a document definition.

Example 1 The conceptual structure of the type Generic_Letter is shown
in Figure 11.1. The node Letter Body is a spring conceptual compo-
nent. The complete conceptual structure in Figure 11.2 corresponds to the
type Business Product_Letter. This type has been obtained from Generic.
Letter by specialization of Letter Body into a complez conceptual component,
defined as an aggregation of five conceptual components. According to the con-
ceptual model, the document type Business Product_Letter is linked to the doc-
ument type Generic Letter by an ‘is-a’ relationship. In this erample, the “+’
symbol attached to the Receiver component means that it is multivalued. Notice
also that the Name and the Address appear in two subtrees having as roots the
conceptual components Receiver and Sender, respectively.

For document retrieval, conceptual types play the role of the database
schema which enables the use of efficient access structures. Moreover, conceptual
types are the basis for formulating queries at an abstract level.

MULTOS also provides a sophisticated approach to deal with image data.
First, an image analysis process is performed, consisting of two phases: low
level image analysis and high level mage analysis. During the low level image
analysis phase, the basic objects composing a given image and their relative
positions are identified. The high level image analysis phase deals with image
interpretation according to the Dempster-Shafter theory of evidence [60, 312].

DATA MODELING 333

Document
Place Date Receiver+ Sender
Name Address Name Address
PR
Street City Country Street City Country

Figure 11.1 Conceptual structure of the type Generic Letter.

Document

Place Date Receiver+

Sender Letter_Body

/

Name Address

2V

Street City Country

Name Address

Street City

PR

Country

Company_Logo Signature
Image Product_Presentation
Text Product_Description
Text Product_Cost

‘Figure 11.2

Text

Complete conceptual structure of the type Business_Product Letter.

At the end of the image analysis process, images are described in terms of the
objects recognized, with associated belief and plausibility values, and the classes
to which they belong. The information is then exploited in image access.
Image access information is stored in an image header, associated with the
image file. Access structures are then built for a fast access to image headers.

Two types of index are constructed:

e Object index. For each object a list is maintained. Each element of the
lists is a pair (BI,IMH), where IMH is a pointer to the header of the image
containing the object, and BI is the associated belief interval, representing
the probability that the image considered really contains the object.

e Cluster index. For each image class, a list of pairs (MF,IMH) is main-
tained. IMH is a pointer to an image header corresponding to an image
with a non-null degree of membership to the class, and MF is the value of
the membership degree. The membership degree of an image to a given
class is computed by comparing the image interpretation resulting from
the analysis phase, with the class description, using techniques analogous
to the ones used in text IR systems [698] (see Chapter 6).

334 MULTIMEDIA IR: MODELS AND LANGUAGES
11.3 Query Languages

Queries in relational or object-oriented database systems are based on an eract
match mechanism, by which the system is able to return exactly those tuples
or objects satisfying some well specified criteria given in the query expression
and nothing more. In general, query predicates specify which values the object
attributes must contain.

Because of the semi-structured nature of multimedia objects, the previous
approach is no longer adequate in a Multimedia IR system. In this context, the
user should still be able to query the content of multimedia objects by specifying
values of semantic attributes but he/she should also be able to specify addi-
tional conditions about the content of multimedia data. Thus, the exact match
is only one of the possible ways of querying multimedia objects. More often, a
similarity-based approach is applied that considers both the structure and the
content of the objects. Queries of the latter type are called content-based queries
since they retrieve multimedia objects depending on their global content. Infor-
mation on the global content of an object is not represented as attribute values
in the database system. Rather. as we have already remarked in section 11.2,
a set of information, called features, is extracted and maintained for each ob-
ject. When the query is submitted, the features of the query ob ject are matched
with respect to the features of the objects stored in the database and only the
objects that are more similar to the query one are returned to the user (see
Chapter 12).

The characteristics of content-based query processing impacts the defini-
tion of a multimedia query language and, in general, of the user interface. In
particular, in designing a multimedia query language, three main aspects require
attention:

» How the user enters his/her request to the system, i.e., which interfaces are
provided to the user for query formulation.

¢ Which conditions on multimedia objects can be specified in the user re-
quest. The conditions that can be expressed depend on the support the
system provides for content-based retrieval (see Chapter 12).

e How uncertainty, proximity, and weights impact the design of the query
language.

In the following, we discuss the above aspects in detail. Then, we present
two examples of multimedia query languages. First, we illustrate how traditional
relational query languages can be extended to deal with multimedia data, dis-
cussing the main characteristics of the upcoming SQL3 query language. Then,
as an example of a research proposal, we introduce the query language supported
by MULTOS (see section 11.2.2).

QUERY LANGUAGES 335
11.3.1 Request Specification

Two different interfaces can be presented to the user for querying multimedia
objects. The first type of interface is based on browsing and navigation. Usually,
due to the complex structure of multimedia objects, it may be useful to let
users browse and navigate inside the structure of multimedia objects to locate
the desired objects. Such an approach is typically used in CAD/CAM/CASE
environments due to the complex structure of the objects under consideration.

Navigation, however, is not always the best way to find multimedia objects,
in that it may be heavily time consuming when the object desired is deeply
nested. The second approach for selecting objects is therefore based, as tra-
ditionally in DBMSs, on specifying the conditions the objects of interest must
satisfy, by means of queries.

Queries, in turn, can be specified in two different ways: the first, typical
of a traditional database context, is to enter the query by using a specific query
language. However, in some cases (especially when images and audio data are
considered), a query by ezample approach is preferred. Under this approach,
queries are specified by using actual data inside a visual environment; the user
provides the system with an object example that is then used to retrieve all the
stored objects similar to the given one. For example, the user may choose a
house and pose the query: ‘Retrieve all houses of similar shape and different
color.” This approach requires the use of a GUI environment where the user
can pick examples and compose the query object. In order to pick examples,
the system must supply some domains, i.e., sets of typical values, one for each
object feature (see section 11.2).

11.3.2 Conditions on Multimedia Data

Multimedia query languages should provide predicates for expressing conditions
on the attributes, the content, and the structure of multimedia objects. In
general, query predicates can be classified into three different groups:

e Attribute predicates concern the attributes (i.e., the structured content)
of multimedia objects.

e Structural predicates concern the structure of the data being considered.

e Semantic predicates concern the semantic and unstructured content of
the data involved.

By the term attribute predicates we mean predicates against traditional
attributes, i.e., attributes for which an exact value is supplied for each object.
Examples of attributes are the speaker of an audio object, the size of an object,
or its type. By querying these predicates, the system applies an exact-match
retrieval, using the same techniques as traditional DBMSs.

Structural predicates concern the structure of multimedia objects. Such
predicates can be answered by using some form of metadata [99, 442] and

336 MULTIMEDIA IR: MODELS AND LANGUAGES

information about the database schema. With respect to traditional databases,
structural queries play a fundamental role in multimedia query processing, due
to the complex structure of multimedia objects. An example of use of a struc-
tural predicate is the query: ‘Find all multimedia objects containing at least one
image and a video clip.’

On the other hand, semantic predicates concern the semantic content of
the queried data, depending on the features that have been extracted and stored
for each multimedia object. An example of a semantic query is ‘Find all the
objects containing the word OFFICE." Note that the word ‘OFFICE’ may appear
either in a textual component of the object or as a text attribute of some image
components. The query 'Find all the red houses is a query on the image content.
This query can be executed only if color and shape are features that have been
previously extracted from images.

Current systems support semantic predicates only with respect to specific
features, such as the color, the shape, the texture, and sometimes the motion.
For example, QBIC allows the retrieval of images with similar shapes or similar
textures with respect to the object example specified in the query [257]. More in-
novative approaches include the Nane-it project, whose aim is to process a video
clip and automatically associate spoken or typed mames with their corresponding
faces [708].

The main difference between attribute predicates and semantic predicates
is that, in the latter case, an exact match cannot be applied. This means that
there is no guarantee that the objects retrieved by this type of predicate are
100% correct or precise. In general, the result of a query involving semantic
predicates is a set of objects. each of which has an associated degree of relevance
with respect to the query. The user can subsequently select the better matches
and submit the query again.

Structural and semantic predicates can also refer to spatial or temporal
properties of multimedia objects. Spatial semantic predicates specify conditions
about the relative positions of a set of objects in an image or a video. Examples
of spatial semantic predicates are: contain, intersect, is contained in, is
adjacent to. Temporal semantic predicates are mainly related to continuous
media, like audio and video. They allow one to express temporal relationships
among the various frames of a single audio or video. For example, the query
‘Find all the objects that contain an audio component, where the hint of the
discussion is first policy, and then economy’ is a temporal audio query.

From the point of view of structural predicates. spatial and temporal pred-
icates can be used to specify temporal synchronization properties and spatial
layout properties for the presentation of multimedia objects [87, 88]. For in-
stance, in the query: ‘Find all the objects containing an image overlapping the
associated text’, a spatial structural predicate is used to impose a condition on
the spatial layout of the retrieved objects. Analogously. the query: ‘Find all the
objects in which a jingle is played for the duration of an image display’ is an
example of a structural temporal query. Note. moreover. that temporal and spa-
tial predicates can be combined to express more articulated requirements. An
example is the query: ‘Find all the objects in which the logo of a car company

QUERY LANGUAGES 337

is displayed and, when it disappears, a graphic showing the increases in the
company sales is shown in the same position where the logo was.’

Due to the complex structure of multimedia objects, all the previous types
of predicates can refer either to the whole object or, if the underlying data model
supports complex object representation, to some subcomponents of the object.
In the last case, the query language must also be able to navigate the object
structure. A typical example in this direction is represented by path expressions
in object-oriented systems [89].

11.3.3 Uncertainty, Proximity, and Weights in Query Expressions

As we have already remarked. the execution of a content-dependent query returns
a set of relevant objects. An interesting aspect in designing a multimedia query
language is how it is possible to specify the degree of relevance of the retrieved
objects. In general, this can be done in three different ways:

e By using some imprecise terms and predicates, such as normal, unac-
ceptable, typical. Each of those terms does not represent a precise value
but a set of possible acceptable values with respect to which the attribute
or the feature has to be matched.

e By specifying particular proximity predicates. In this case, the predicate
does not represent a precise relationship between objects or between at-
“tributes/features and values. Rather, the relationship represented is based
on the computation of a semantic distance between the query object and
the stored ones, on the basis of the extracted features. The Nearest object
search is an example of proximity predicate, by which the user requests all
the objects which are closest or within a certain distance of a given object.
Indexing support for this kind of query is discussed in Chapter 12.

e By assigning each condition or term a given weight, specifying the degree of
precision by which a condition must be verified by an object. For example,
the query "Find all the objects containing an image representing a screen
(HIGH) and a keyboard (LOW)’ [657], can be used to retrieve all the ob-
jects containing an image representing a screen and a keyboard. However,
the objects containing only a screen are also retrieved and returned to the
user, after the ones containing both the screen and the keyboard, since
the condition imposing the containment of a keyboard is weaker than the
condition imposing the containment of a screen.

The use of imprecise terms and relationships, as well as the use of weights,
allows the user to drive the similarity-based selection of relevant objects. The
corresponding query is executed by assigning some importance and preference
values to each predicate and term. Then, objects are retrieved and presented
to the user as an ordered list. This ordering is given by a score associated with
each object. giving a measure of the matching degree between the object and

338 MULTIMEDIA IR: MODELS AND LANGUAGES

the query. The computation of the score is based on probabilistic models, using
the preference values assigned to each predicate.

11.3.4 Some Proposals

In the following we briefly survey some query languages supporting retrieval of
multimedia objects. In order to describe how standard languages are evolving
to support multimedia applications, we first describe the facilities provided by
the upcoming standard SQL3 to support such kinds of applications. Then, we
present the query language supported by the MULTOS system [90], introduced
in section 11.2.2.

The SQL3 Query Language

As we have seen in section 11.2.1, the extensible type system and in general the
ability to deal with complex objects make SQL3 suitable for modeling multimedia
data. From the query language point of view, the major improvements of SQL3
with respect to SQL-92 can be summarized as follows:

e Functions and stored procedures. SQL3 allows the user to integrate
external functionalities with data manipulation. This means that functions
of an external library can be introduced into a database system as external
functions. Such functions can be either implemented by using an external
language, and in this case SQL3 only specifies which is the language and
where the function can be found, or can be directly implemented by using
SQL3 itself. In this way, impedance mismatch between two different pro-
gramming languages and type systems is avoided. Of course, this approach
requires an extension of SQL with imperative programming languages con-
structs.

¢ Active database facilities. Another important property of SQL3 is the
support of active rules, by which the database is able to react to some
system- or user-dependent events by executing specific actions. Active
rules, or triggers, are very useful to enforce integrity constraints.

From the multimedia perspective point of view, the aspects described make
SQL3 suitable for being used as an interface language for multimedia applica-
tions. In particular, the ability to deal with external functions and user-defined
data types enables the language to deal with objects with a complex structure,
as multimedia objects. Note that, without this characteristic, the ability to deal
with BLOB would have been useless since it reduces the view of multimedia
data to single large uninterpreted data values, which are not adequate for the
rich semantics of multimedia data. By the use of triggers, spatial and temporal
constraints can be enforced, thus preserving the database consistency. Finally,
as SQL3 is a widespread standard, it allows one to model multimedia objects in
the framework of a well understood technology.

QUERY LANGUAGES 339

Though the above facilities make SQL3 suitable for use as an interface for
multimedia applications, there are also some limitations. The main drawback
is related to retrieval support and. as a consequence, optimization. Indeed,
no IR techniques are integrated into the SQL3 query processor. This means
that the ability to perform content-based search is application dependent. As a
consequence, objects are not ranked and are therefore returned to the application
as a unique set. Moreover, specialized indexing techniques can be used but they
are not transparent to the user.

Bearing in mind the previous limitations, several projects have already
been started with the aim of integrating SQL3 with IR facilities. An example
of such a project is represented by SQL/MM Full Text [190]. Text is in this
case considered as a nested sequence of words, sentences, and paragraphs. In
order to precisely capture the structure and the meaning of the words, SQL/MM
Full Text is also able to view the text as a tree structure entity. The structure
of this entity is controlled by a grammar. These facilities allow one to easily
express queries to perform selection on the basis of the text content and/or text
structure.

There have also been several proposals for introducing spatial data types
and predicates into the SQL framework. Among them, we recall Probe [623],
Spatial SQL [231]. Pictorial SQL [687], and QBE [418].

The MULTOS Query Language

The development of the MULTOS query language has been driven by a num-
ber of requirements: first, it should be possible to easily navigate through the
document structure. Path-names can be used for this purpose. Path-names can
be total, if the path identifies only one component, or partial, if several compo-
nents are identified by the path. Path-names are similar to object-oriented path
expressions. Queries both on the content and on document structure must be
supported.

Query predicates on complex components must be supported. In this case.
the predicate applies to all the document subcomponents that have a type com-
patible with the type required by the query. This possibility is very useful when
a user does not recall the structure of a complex component.

In general, a MULTOS query has the form:

FIND DOCUMENTS VERSION version-clause
SCOPE scope-clause

TYPE type-clause

WHERE condition-clause

WITH component

where:

e The version-clause specifies which versions of the documents should be
considered by the query.

340 MULTIMEDIA IR: MODELS AND LANGUAGES

o The scope-clause restricts the query to a particular set of documents. This
set of documents is either a user-defined document collection or a set of
documents retrieved by a previous query.

e The type-clause allows the restriction of a query to documents belonging
to a prespecified set of types. The conditions expressed by the condition-
clause only apply to the documents belonging to these types and their
subtypes. When no type is specified, the query is applied to all document
types.

e The condition-clause is a Boolean combination of simple conditions (i.e.,
predicates) on documents components. Predicates are expressed on con-
ceptual components of documents. Conceptual components are referenced
by path-names. The general form of a predicate is:

component restriction

where component is a path-name and restriction is an operator followed by
an expression.

® The with-clause allows one to express structural predicates. Component is
a path-name and the clause looks for all documents structurally containing
such a componeift.

Different types of conditions can be specified in order to query different
types of media. In particular, MULTOS supports three main classes of pred-
icates: predicates on data attributes, on which an exact match search is per-
formed; predicates on textual components, determining all objects containing
some specific strings: and predicates on images, specifying conditions on the
image content. Image predicates allow one to specify conditions on the class
to which an image should belong or conditions on the existence of a specified
object within an image and on the number of occurrences of an object within
an image. The following example illustrates the basic features of the MULTOS
query language.

Example 2 Consider the conceptual structure Generic_letter, presented in
ezample 1. The following is an example of query:

FIND DOCUMENT VERSIONS LAST WHERE

Document .Date > 1/1/1998 AND

(*Sender .Name = "QOlivetti" OR

*Product Presentation CONTAINS "Olivetti") AND

*Product Description CONTAINS "Personal Computer" AND
(*Address.Country = "Italy" OR TEXT CONTAINS "Italy") AND
WITH *Company_Logo.

According to this query, the user looks for the last version of all documents,
dated after January 1998. containing a company logo, having the word ‘Olivetti’
either as sender name or in the product presentation (which is a textual com-
ponent), with the word ‘Personal Computer’ in the product description section

TRENDS AND RESEARCH ISSUES 341

(which is another textual component) and with the word ‘Italy’ either constitut-
ing the country in the address or contained in any part of the entire document.
Symbol ‘*’ indicates that the path-name is not complete, that is, it could identify
more than one component.

The query language provided by MULTOS also supports the specification
of imprecise queries that can be used when the user has an uncertain knowledge
about the content of the documents he/she is seeking {657]. Such uncertainty
is expressed by associating both a preference and an importance value with the
attributes in the query. Such values are then used for ranking the retrieved
documents. The following example illustrates the discussion.

Example 3 The query:

FIND DOCUMENT VERSIONS LAST WHERE

(Document .Date BETWEEN (12/31/1998,1/31/98) PREFERRED
BETWEEN (2/1/1998,2/15/98) ACCEPTABLE) HIGH AND

(*Sender .Name = "Olivetti" OR

*Product Presentation CONTAINS “"Olivetti") HIGH AND
(*Product _Description CONTAINS "Personal Computer") HIGH AND
(*Product Description CONTAINS "good ergonomics") LOW AND
(*Address.Country = "Italy" OR TEXT CONTAINS "Italy") HIGH
AND

WITH *Company_Logo HIGH

(IMAGE MATCHES

screen HIGH

keyboard HIGH

AT LEAST 2 floppy-drives LOW) HIGH

finds the last versions of all documents written in January, but possibly even
at the beginning of February 1998, containing a company logo, having the word
‘Olivetti’ either as sender name or in the product presentation, with the word
‘Personal Computer’ in the product description section, and with the word ‘Italy’
either constituting the country in the address or contained in any part of the
entire document. Personal Computers are described in the product description
section as products having good ergonomics. Moreover, the document should
contain a picture of the Personal Computer, complete with screen and keyboard,
with at least two floppy drives. The value ‘LOW’ associated with the condition on
‘good ergonomics’ indicates that the user formulating the query is not completely
sure about this description of PC. By contrast, he/she is sure of all the conditions
whose associated value is ‘HIGH.’

11.4 Trends and Research Issues

In this chapter we have discussed the main issues in developing a Multimedia
IR system. We have observed that only the integration of DBMS and IR tech-
nologies provides the ability to represent, store. and manipulate multimedia data
and, at the same time, to retrieve those data by applying content-based searches.

342 MULTIMEDIA IR: MODELS AND LANGUAGES

We then discussed the main issues arising in defining a data model for mul-
timedia data. Since multimedia data has, in general, a complex structure, the
data model must be able to reflect and manage this complexity. Object-oriented
or object-relational data models represent the right technology for multimedia
data representation. Additional relevant requirements include the support of
semi-structured data and metadata. Another important requirement is the abil-
ity to internally represent the content of multimedia data in a way that ensures
fast retrieval of the stored data and efficient processing of content-based queries.
To achieve this goal, semantic features can be extracted from the data. stored
inside the system, and used during query processing.

The second topic discussed in this chapter is related to multimedia query
languages. We observed that a multimedia query language is characterized by
the type of interface presented to the user and the tvpes of predicates it allows
in a query. Such predicates are used to perform content-based searches and to
let the user drive the selection of relevant objects.

Examples of commercial and prototype systems have been discussed. with
respect to the data modeling and query language capabilities.

Several aspects require further investigation. For example, even though
SQL3 supports multimedia data representation, it cannot be taken as the basis
for the definition of a Multimedia IR system. Additional research is needed to
integrate SQL3 with specific language constructs and underlying techniques to
perform information retrieval and query optimization.

Another topic is related to XML (see Chapter 6), the new standard format
for data on the Web [304]. XML is a text-based format. providing a standard
data model to encode the content, the semantics. and the schema of ordinary
documents, structured records, and metacontent information about a Web site.
The extension of such a standard to support multimedia data and content-based
queries is an important research direction.

A further direction concerns the techniques for ranking the objects returned
by a partial-match query. Such ranking usually only takes into account the
degree of similarity of the objects retrieved with the query request. However,
other factors can be considered, such as the profile of the user submitting the
query, or the history of the previous queries specified by the user. Taking into
account these aspects is very important. since it gives rise to a customized ranking
which is closer to the user needs.

11.5 Bibiographic Discussion

As we have seen, due to their complex nature, the object-oriented paradigm
seems the right approach to model multimedia data. Details about object-
oriented database models and architectures can be found in [89]. The object
database standard, as defined by the Object Database Management Group, is
presented in [150)].

On the research side, several models have been proposed for multimedia

BIBIOGRAPHIC DISCUSSION 343

data. Such proposals range from data models suitable for a particular media
type, like data models for videos [211, 238, 297, 621], data models for images
[170] or models for spatial data [623], to general-purpose multimedia data models
(169, 296, 397, 545, 759, 827].

Issues related to the definition and the classification of metadata in the
multimedia context are extensively discussed in [99, 442]. Among the systems
supporting similarity-based queries, we recall QBIC [257], Name-It [708], QBE
(418], Probe [623], and PICQUERY [418]. For additional details about video and
image multimedia databases we refer the reader to [405] and [438], respectively.
Details about modeling and architectural aspects of the MULTOS system can
be found in [759)].

Chapter 12

Multimedia IR: Indexing and
Searching

by Christos Faloutsos

12.1 Introduction

The problem we focus on here is the design of fast searching methods that will
search a database of multimedia objects to locate objects that match a query
object, exactly or approximately. Objects can be two-dimensional color images,
gray-scale medical images in 2D or 3D (e.g., MRI brain scans), one-dimensional
time series, digitized voice or music, video clips, etc. A typical query by content
would be, e.g.. “in a collection of color photographs, find ones with the same color
distribution as a sunset photograph.’

Specific applications include image databases: financial, marketing and
production time series; scientific databases with vector fields; audio and video
databases; DNA/Genome databases; etc. In such databases, typical queries
would be ‘find companies whose stock prices move similarly,” or ‘find images
that look like a sunset,’ or ‘find medical X-rays that contain something that has
the texture of a tumor.’” Searching for similar patterns in such databases as the
above is essential, because it helps in predictions, computer-aided medical diag-
nosis and teaching, hypothesis testing and, in general, in ‘data mining’ [8] and
rule discovery.

, Of coutse, the distance of two objects has to be quantified. We rely on a
domain expert to supply such a distance function D():

Definition Given two objects, O1 and Oa, the distance (= dissimilarity) of
the two objects is denoted by

D(Oy,02) (12.1)

For example, if the objects are two (equal-length) time series, the distance D()
could be their Euclidean distance (the root of the sum of squared differences).
Similarity queries can been classified into two categories:

345

346 MULTIMEDIA IR: INDEXING AND SEARCHING

¢ Whole match Given a collection of N objects O1,0q,...,0Opn and a query
object O, we want to find those data objects that are within distance ¢ from
Q- Notice that the query and the objects are of the same type: for example,
if the objects are 512 x 512 gray-scale images, so is the query.

e Sub-pattern match Here the query is allowed to specify only part of the
object. Specifically, given N data objects (e.g., images) O;,0Os, ..., On, a
query (sub-)object (Q and a tolerance ¢, we want to identify the parts of
the data objects that match the query. If the objects are, e.g., 512x512
gray-scale images (like medical X-rays), in this case the query could be,
e.g., a 16x16 subpattern (e.g., a typical X-ray of a tumor).

Additional types of queries include the ‘nearest neighbors’ queries (e.g.,
‘find the five most similar stocks to IBM's stock’) and the ‘all pairs’ queries
or ‘spatial joins' (e.g., ‘report all the pairs of stocks that are within distance
€ from each other’). Both the above types of queries can be supported by the
approach we describe next. As we shall see, we reduce the problem into searching
for multi-dimensional points, which will be organized in R-trees; in this case,
nearest-neighbor search can be handled with a branch-and-bound algorithm and
the spatial join query can be handled with recent, highly fine-tuned algorithms,
as discussed in section 12.8. Thus, we do not focus on nearest-neighbor and
‘all-pairs’ queries.

For all the above types of queries, the ideal method should fulfill the fol-
lowing requirements:

e It should be fast. Sequential scanning and distance calculation with each
and every object will be too slow for large databases.

e It should be ‘correct.” In other words, it should return all the qualifying
objects, without missing any (i.e., no ‘false dismissals’). Notice that ‘false
alarms’ are acceptable, since they can be discarded easily through a post-
processing step. Of course, as we see, e.g. in Figure 12.5, we try to keep
their number low (but not necessarily minimal), so that the total response
time is minimized.

e The ideal method should require a small space overhead.

e The method should be dynamic. It should be easy to insert, delete, and
update objects.

As we see next, the heart of the presented ‘GEMINI’ approach is to use f
feature extraction functions to map objects into points in f-dimensional space;
thus, we can use highly fine-tuned database spatial access methods to accelerate
the search.

The remainder of the chapter is organized as follows. Section 12.2 gives
some background material on past related work on spatial access methods. Sec-
tion 12.3 describes the main ideas for GEMINI, a generic approach to indexing
multimedia objects. Section 12.4 shows the application of the approach for 1D
time series indexing. Section 12.5 gives another case study, for color images,

BACKGROUND — SPATIAL ACCESS METHODS 347

within the QBIC project. Section 12.6 presents ‘FastMap', a method to do au-
tomatic feature extraction. Section 12.7 summarizes the conclusions and lists
problems for future research and section 12.8 provides pointers to the related
bibliography.

12.2 Background — Spatial Access Methods

As mentioned earlier, the idea is to map objects into points in f-D space, and
to use multiattribute access methods (also referred to as spatial access methods
or SAMs) to cluster them and to search for them.

Thus, a brief introduction to multidimensional indexing methods (or spatial
access methods) is in order. The prevailing methods form three classes: (1) R*-
trees and the rest of the R-tree family, (2) linear quadtrees, and (3) grid-files.

Several of these methods explode exponentially with the dimensionality,
eventually reducing to sequential scanning. For linear quadtrees, the effort is
proportional to the hypersurface of the query region [244]; the hypersurface grows
exponentially with the dimensionality. Grid files face similar problems, since they
require a directory that grows exponentially with the dimensionality. The R-tree-
based methods seem to be most robust for higher dimensions, provided that the
fanout of the R-tree nodes remains > 2. Below, we give a brief description of
the R-tree method and its variants, since it is one of the typical representatives
of spatial access methods.

The R-tree represents a spatial object by its minimum bounding rectangle
(MBR). Data rectangles are grouped to form parent nodes, which are recursively
grouped, to form grandparent nodes and, eventually, a tree hierarchy. The MBR
of a parent node completely contains the MBRs of its children; MBRs are al-
lowed to overlap. Nodes of the tree correspond to disk pages. Disk pages, or
‘disk blocks’, are consecutive byte positions on the surface of the disk that are
typically fetched with one disk access. The goal of the insertion, split, and dele-
tion routines is to give trees that will have good clustering, with few, tight parent
MBRs. Figure 12.1 illustrates data rectangles (in black), organized in an R-tree
with fanout 3. Figure 12.2 shows the file structure for the same R-tree, where
nodes correspond to disk pages.

A range query specifies a region of interest, requiring all the data regions
that intersect it. To answer this query, we first retrieve a superset of the qual-
ifying data regions: we compute the MBR of the query region, and then we
recursively descend the R-tree, excluding the branches whose MBRs do not in-
tersect the query MBR. Thus, the R-tree will give us quickly the data regions
whose MBR intersects the MBR of the query region. The retrieved data regions
will be further examined for intersection with the query region.

Algorithms for additional operations (nearest neighbor queries. spatial
joins, insertions, and deletions) are more complicated and are still under re-
search (see the Bibliographic Discussion).

The original R-tree paper inspired much follow-up work, as described in

348 MULTIMEDIA IR: INDEXING AND SEARCHING

1

Figure 12.1 Data (dark rectangles) organized in an R-tree with fanout = 3.
Solid, light-dashed, and heavy-dashed lines indicate parents, grandparents and great-
grandparent (the root, in this example).

Figure 12.2 The file structure for the R-tree of the previous figure (fanout = 3).

section 12.8. It is important to highlight, however, that any spatial access method
can be used (like R*-trees, X-trees, SR-trees, and so on).

12.3 A Generic’Multimedia Indexing Approach

To illustrate the basic idea, we shall focus on ‘whole match’ queries. For such
queries the problem is defined as follows:

e We have a collection of N objects: Oy, O, ..., On.

e The distance/dissimilarity between two objects (0;,0;) is given by the
function D(0O;, 0;), which can be implemented as a (possibly, slow) pro-
gram.

o The user specifies a query object @, and a tolerance ¢.

A GENERIC MULTIMEDIA INDEXING APPROACH 349

Our goal is to find the objects in the collection that are within distance ¢ from
the query object. An obvious solution is to apply sequential scanning: For each
and every object O; (1 < ¢ < N), we can compute its distance from @ and report
the objects with distance D(Q,0;) < ¢.

However, sequential scanning may be slow, for two reasons:

(1) The distance computation might be expensive. For example, as discussed
in Chapter 8, the editing distance in DNA strings requires a dynamic pro-
gramming algorithm, which grows like the product of the string lengths
(typically, in the hundreds or thousands, for DNA databases).

(2) The database size N might be huge.

Thus, we are looking for a faster alternative. The GEMINI (GEneric Multimedia
object INdexIng) approach we present next, is based on two ideas, each of which
tries to avoid each of the two disadvantages of sequential scanning:

e a ‘quick-and-dirty’ test, to discard quickly the vast majority of non-
qualifying objects (possibly, allowing some false alarms);

o the use of spatial access methods, to achieve faster-than-sequential search-
ing.

The case is best illustrated with an example. Consider a database of time
series, such as yearly stock price movements, with one price per day. Assume
that the distance function between two such series S and Q is the Euclidean
distance

1/2
D(S,Q) = (Z(SM—QM)‘*) (12.2)

i=1

where S[i] stands for the value of stock S on the i-th day. Clearly, computing
the distance of two stocks will take 365 subtractions and 365 squarings in our
example.

The idea behind the quick-and-dirty test is to characterize a sequence with
a single number, which will help us discard many non-qualifying sequences. Such
a number could be, e.g., the average stock price over the year. Clearly, if two
stocks differ in their averages by a large margin, it is impossible that they will
be similar. The converse is not true, which is exactly the reason we may have
false alarms. Numbers that contain some information about a sequence (or a
multimedia object, in general), will be referred to as ‘features’ for the rest of this
chapter. Using a good feature (like the ‘average,’ in the stock prices example),
we can have a quick test, which will discard many stocks, with a single numerical
comparison for each sequence (a big gain over the 365 subtractions and squarings
that the original distance function requires).

If using one feature is good, using two or more features might be even
better, because they may reduce the number of false alarms (at the cost of

350 MULTIMEDIA IR: INDEXING AND SEARCHING

making the quick-and-dirty test a bit more elaborate and expensive). In our
stock prices example, additional features might be, e.g., the standard deviation,
or, even better, some of the discrete Fourier transform (DFT) coefficients, as we
shall see in section 12.4.

The end result of using f features for each of our objects is that we can map
each object into a point in f-dimensional space. We shall refer to this mapping
as F() (for ‘F’eature):

Definition Let F() be the mapping of objects to f-dimensional points, that
is, F(O) will be the f-D point that corresponds to object O.

This mapping provides the key to improve on the second drawback of se-
quential scanning: by organizing these f-D points into a spatial access method,
we can cluster them in a hierarchical structure, like the R*-trees. Upon a query,
we can exploit the R*-tree, to prune out large portions of the database that are
not promising. Thus, we do not even have to do the quick-and-dirty test on all
of the f-D points!

Figure 12.3 illustrates the basic idea: Objects (e.g., time series that are 365
points long) are mapped into 2D points (e.g., using the average and the standard
deviation as features). Consider the ‘whole match’ query that requires all the
objects that are similar to S,, within tolerance ¢: this query becomes an f-D
sphere in feature space, centered on the image F(S,) of S,. Such queries on
multidimensional points is exactly what R-trees and other SAMs are designed
to answer efficiently. More specifically, the search algorithm for a whole match
query is as follows:

Si
A A S
oA /\
/ \\ / v \ Feature2
(/ \/ \
/ v N TTee-l S
/ \ el FS)
o
1 365
'1 e,
! ot
g AF(Sy)
S, | P
" ‘\\ L Featurel
A /
™ Jv -
1 365
Figure 12.3 Illustration of the basic idea: a database of sequences S;, ..., Sny; each

sequence is mapped to a point in feature space; a query with tolerance ¢ becomes a
sphere of radius =.

A GENERIC MULTIMEDIA INDEXING APPROACH 351
Algorithm 1 Search:

(1) Map the query object Q into a point F(Q) in feature space.

(2) Using a spatial access method, retrieve all points within the desired tolerance
e from F(Q).

(3) Retrieve the corresponding objects, compute their actual distance from Q
and discard the false alarms.

Intuitively, the method has the potential to relieve both problems of the
sequential scan, presumably resulting in much faster searches. The only step
that we have to be careful with is that the mapping F () from objects to f-D
points does not distort the distances. Let D() be the distance function of two
objects, and Dyeature() be the (say, Euclidean) distance of the corresponding
feature vectors. Ideally, the mapping should preserve the distances- exactly, in
which case the SAM will have neither false alarms nor false dismissals. However,
requiring perfect distance preservation might be difficult. For example, it is not
obvious which features we have to use to match the editing distance between
two DNA strings. Even if the features are obvious, there might be practical
problems: for example, in the stock price example, we could treat every sequence
as a 365-dimensional vector; although in theory a SAM can support an arbitrary
number of dimensions, in practice they all suffer from the ‘dimensionality curse,’
as discussed earlier.

The crucial observation is that we can guarantee that there will be no
false dismissals if the distance in feature space matches or underestimates the
distance between two objects. Intuitively, this means that our mapping F () from
objects to points should make things look closer (i.e., it should be a contractive
mapping).

Mathematically, let O; and O; be two objects (e.g., same-length sequences)
with distance function D() (e.g., the Euclidean distance) and F(0O,), F (O2)
be their feature vectors (e.g., their first few Fourier coefficients), with distance
function Dyeature() (e.8., the Euclidean distance, again). Then we have:

Lemma 12.1 (Lower Bounding) To guarantee no false dismissals for whole-
match queries, the feature extraction function F() should satisfy the following
formula:

Dfeature(F(01), F(O2)) < D(01,04) (12.3)

As proved in [249], lower-bounding the distance works correctly for range
queries. Wil it work for the other queries of interest, like ‘all pairs’ and ‘nearest
neighbor’ ones? The answer is affirmative in both cases. An ‘all pairs’ query
can easily be handled by a ‘spatial join’ on the points of the feature space: using
a similar reasoning as before, we see that the resulting set of pairs will be a
superset of the qualifying pairs. For the nearest neighbor query, the following
algorithm guarantees no false dismissals: (1) find the point F (P) that is the

352 MULTIMEDIA IR: INDEXING AND SEARCHING

nearest neighbor to the query point F(Q), (2) issue a range query, with query
object @) and radius £ = D(Q, P) (i.e., the actual distance between the query
object @ and data object P).

In conclusion, the GEMINI approach to indexing multimedia objects for
fast similarity searching is as follows:

Algorithm 2 (GEMINI) GEneric Multimedia object INdexIng approach:

(1) Determine the distance function D() between two objects.

(2) Find one or more numerical feature-extraction functions, to provide a
‘quick-and-dirty’ test.

(8) Prove that the distance in feature space lower-bounds the actual distance
D(), to guarantee correctness.

(4) Use a SAM (e.g., an R-tree), to store and retrieve the f-D feature vectors.

The first two steps of GEMINI deserve some more discussion: the first step
involves a domain expert. The methodology focuses on the speed of search only;
the quality of the results is completely relying on the distance function that
the expert will provide. Thus, GEMINI will return ezactly the same response
set (and therefore, the same quality of output, in terms of precision-recall) that
would be returned by a sequential scanning of the database; the only difference
is that GEMINI will be faster.

The second step of GEMINI requires intuition and imagination. It starts
by trying to answer the question (referred to as the ‘feature-extracting’ question
for the rest of this chapter):

‘Feature-extracting’ question: If we are allowed to use only one

numerical feature to describe each data object, what should this feature
be?

The successful answers to the above question should meet two goals: first, they
should facilitate step 3 (the distance lower-bounding), and second, they should
capture most of the characteristics of the objects.

We give case studies of steps 2 and 3 of the GEMINI algorithm in the
following sections. The first involves 1D time series, and the second focuses on
2D color images. We shall see that the philosophy of the quick-and-dirty filter,
in conjunction with the lower-bounding lemma, can lead to solutions to two
problems:

o the dimensionality curse (time series)

o the ‘cross-talk’ of features (color images).

For each case study, we first describe the objects and the distance function, then
show how to apply the lower-bounding lemma, and finally give experimental
results. on real or realistic data.

ONE-DIMENSIONAL TIME SERIES 353
12.4 One-dimensional Time Series

Here the goal is to search a collection of (equal-length) time series, to find the
ones that are similar to a desirable series. For example, ‘in a collection of yearly
stock price movements, find the ones that are similar to IBM.’

12.4.1 Distance Function

According to GEMINI (algorithm 2), the first step is to determine the distance
measure between two time series. A typical distance function is the Euclidean
distance (equation 12.2), which is routinely used in financial and forecasting
applications. Additional, more elaborate distance functions, that, for example,
include time-warping, are discussed in section 12.8.

12.4.2 Feature Extraction and Lower-bounding

Having decided on the Euclidean distance as the dissimilarity measure, the next
step is to find some features that can lower-bound it. We would like a set of
features that first, preserve/lower-bound the distance, and second, carry much
information about the corresponding time series (so that the false alarms are
few). The second requirement suggests that we use ‘good’ features, that have
much discriminatory power. In the stock price example, a ‘bad’ feature would
be, e.g., the first day’s value: the reason being that two stocks might have similar
first-day values, yet they may differ significantly from then on. Conversely, two
otherwise similar sequences may agree everywhere, except for the first day’s
values. At the other extreme, we could use the values of all 365 days as features.
However, although this would perfectly match the actual distance, it would lead
to the ‘dimensionality curse’ problem.

Clearly, we need some better features. Applying the second step of the
GEMINT algorithm, we ask the feature-extracting question: ‘If we are allowed
to use only one feature from each sequence, what would this feature be? A
natural answer is the average. By the same token, additional features could be
the average of the first half. of the second half, of the first quarter, etc. Or, in
a more systematic way. we could use the coefficients of the Fourier transform,
and, for our case, the Discrete Fourier Transform (DFT). For asignal ¥ = (@],
t=0,.... n—1, let X denote the n-point DFT coefficient at the F-th frequency
(F=0...., n—1).

The third step of the GEMINI methodology is to show that the distance
in feature space Jower-bounds the actual distance. The solution is provided by
Parseval’s theorem. which states that the DFT preserves the energy of a signal,
as well as the distances between two signals:

D(Z,7) = D(X.Y) (12.4)

354 MULTIMEDIA IR: INDEXING AND SEARCHING

where X and Y are Fourier transforms of & and y respectively.
Thus, if we keep the first f(f < n) coeflicients of the DFT as the features,
we lower-bound the actual distance:

f-1
Dieature(F(E). F@) = D |Xr-Yr|
F=0
n—1
< > Xp-YRl
F==0

n—1
= z |z: — yi|2
=0
and finally
Dfeature(]:(f)sf(g)) S 'D(f»g‘) (12'5)

because we ignore positive terms from equation 12.2. Thus, there will be no false
dismissals, according to lemma 12.1.

Notice that the GEMINI approach can be applied with any orthonormal
transform, such as, the Discrete Cosine Transform (DCT), the wavelet trans-
form etc., because they all preserve the distance between the original and the
transformed space. In fact, our response time will improve with the ability of
the transform to concentrate the energy: the fewer the coefficients that contain
most of the energy, the more accurate our estimate for the actual distance, the
fewer the false alarms, and the faster our response time. Thus, the performance
results presented next are just pessimistic bounds; better transforms will achieve
even better response times.

In addition to being readily available, (e.g., in ‘Mathematica,” ‘S,” ‘maple,’
‘matlab’ etc.), the DFT concentrates the energy in the first few coefficients, for
a large class of signals, the colored noises. These signals have a skewed energy
spectrum (O(F~?), as follows:

o For b = 2, we have the so-called random walks or brown noise, which model
successfully stock movements and exchange rates (e.g., [541]).

e With even more skewed spectrum (b > 2), we have the black noises [712].
Such signals model successfully, for example, the water level of rivers and
the rainfall patterns as they vary over time {541].

e With b = 1, we have the pink noise. Birkhoff's theory [712] claims that
‘interesting’ signals, such as musical scores and other works of art, consist
of pink noise, whose energy spectrum follows O(F~1). The argument of
the theory is that white noise with O(F°) energy spectrum is completely
unpredictable, while brown noise with O(F ~2) energy spectrum is too pre-
dictable and therefore ‘boring.” The energy spectrum of pink noise lies in
between.

ONE-DIMENSIONAL TIME SERIES 355

10.]

1.32 0.1

500 1000~ 300 20p0 F2SNo 3000 5 40 A
o M !
1.28 LS
[_ .
: 5 10 56. 100 500. 1000,

(a) time plot (lin-lin)

b) amplitude spectrum (log-log)

Figure 12.4 (a) The Swiss-franc exchange rate (7 August 1990 to 18 April 1991
first 3000 values out of 30,000) and (b) log-log amplitude of its Fourier transform. along
with the 1/F line.

As an illustration of the above observations, Figure 12.4(a) plots the move-
ment of the exchange rate between the Swiss franc and the US dollar starting
7 August 1990 (3000 measurements): Figure 12.4(b) shows the amplitude of the
Fourier coefficients as a function of the frequency F, as well as the 1/F line. in
a logarithmic-logarithmic plot. Notice that, since it is successfully modeled as a
random walk, the amplitude of the Fourier coefficients follow the 1 /F line. The
above data set is available through anonymous ftp from sfi.santafe.edu.

In addition to 1D signals (stock price movements and exchange rates), it
is believed that several families of real n-D signals belong to the family of ‘col-
ored noises’, with skewed spectrum. For example, 2D signals, like photographs,
are far from white noise, exhibiting a few strong coefficients in the lower spatial
frequencies. The JPEG image compression standard exploits this phenomenon,
effectively ignoring the high frequency components of the discrete cosine trans-
form, which is closely related to the Fourier transform. If the image censisted of
white noise, no compression would be possible at all.

12.4.3 Experiments

Performance results with the GEMINI approach on time series are reported in
~ [6]. There, the method is compared to a sequential scanning methed. The R*-
tree was used for the spatial access method within GEMINI. The sequences were
artificially generated random walks, with length n = 1024; their number N varied
from 50 to 400.

Figure 12.5 shows the break-up of the response time, as a function of the
number f of DFT coefficients kept. The diamonds, triangles, and squares in-
dicate total time, post-processing time, and R*-tree time, respectively. Notice
that, as we keep more features f, the R*-tree becomes bigger and slower. but
more accurate (fewer false alarms. and therefore shorter post-processing time).
This tradeoff reaches an equilibrium for f = 2 or 3. For the rest of the ex-
periments, the f = 2 Fourier coefficients were kept for indexing. resulting in a
four-dimensional R*-tree (two real numbers for each complex DFT coefficient).

356 MULTIMEDIA IR: INDEXING AND SEARCHING

9
80 I A§° o—°
_6r ——
2 0O Search
E A Post
= ¢ Total n/u
16 / u/
5 C E 1 i 1
1 2 3 4
Number of Fourier Coefficients

Figure 12.5 Breakup of the execution time, for range query (db size N = 400 se-
quences).

178 } .
£ 0 GEMINI
g A Seq
.E.: A
=
S 80+ /
=
153
2 /
42 F “ a
?o:‘ I ‘/ /
= 21
11 I 1 1 1
50 100 * 200 400

Sequence Set Size

Figure 12.6 Search time per query vs. number N of sequences, for whole-match
queries; GEMINI (black line) and sequential scanning (gray line).

Figure 12.6 shows the response time for the two methods (GEMINI and
sequential scan), as a function of the number of sequences N. Clearly, GEMINI
outperforms the sequential scanning.

The major conclusions from the application of GEMINI on time series are
the following:

(1) GEMINI can be successfully applied to time series, and specifically to the
ones that behave like ‘colored noises’ (stock prices movements, currency
exchange rates, water level in rivers etc.).

(2) For signals with skewed spectrum like the above ones, the minimum in
the response time is achieved for a small number of Fourier coefficients
(f = 1.2,3). Moreover, the minimum is rather flat, which implies that

TWO-DIMENSIONAL COLOR IMAGES 357

a suboptimal choice for f will give search time that is close to the mini-
mum. Thus, with the help of the lower-bounding lemma and the energy-
concentrating properties of the DFT. we managed to avoid the “dimension-
ality curse.’

(3) The success in 1D series suggests that GEMINI is promising for 2D or
higher-dimensionality signals. if those signals also have skewed spectruni.
The success of JPEG (that uses DCT) indicates that real immages indeed
have a skewed spectrum.

Finally, the method has been extended to handle subpattern matching: for time
sequences, the details are in {249]. We only mention the main idea here. Assum-
ing that query patterns have length of at least w. we preprocess every sequence of
the database, by allowing a sliding window of length « at each and every possible
position. and by extracting the f features for a given positioning of the window.
Thus, every sequence becomes a trail in the f-dimensional feature space. which
can be further approximated by a set of few MBRs that cover it. Representing
each sequence by a few MBRs in feature space may allow false alarms. but no
false dismissals. The approach can be generalized for subpattern matching in
2D signals (and, in general, in n-dimensional vector fields).

12.5 Two-dimensional Color Images

GEMINI has also been applied for color images. within the QBIC project of
IBM. The QBIC (Query By Image Content) project studies methods to query
large online image databases using the images’ content as the basis of the queries.
Examples of the content include color. texture, shape. position. and dominant
edges of image items and regions. Potential applications include medical (" Giwe
me other images that contain a tumor with a terture like this one'). photo-
journalism (*Give me images that have blue at the top and red at the bottom’).
and many others in art, fashion. cataloging. retailing, and industry.

Here we will discuss methods on databases of still images. with two main
datatypes: ‘images’ (= ‘scenes') and “items.” A scene is a (color) image, and an
item is a part of a scene. for example. a person. a picce of outlined texture, or
an apple. Each scene has zero or more items. The identification and extraction
of items is beyond the scope of this discussion (see [603] for more details).

In this section we give an overview of the indexing aspects of QBIC. and
specifically the distance functions and the application of the GEMINI approach.

[rd]

More details about the algorithms and the implementation of QBIC are in [257].

12.5.1 Image Features and Distance Functions

We mainly focus on the color features. because color presents an interesting prob-
lem (namely. the cross-talk’ of features). which can be resolved by the GENINI

358 MULTIMEDIA IR: INDEXING AND SEARCHING

pixel T
count |
|~ ~
| . \
Y \
N e
L
-
(L] LT x
orange dark
pink . blue
bright light
red blue

Figure 12.7 An example of a color histogram of a fictitious sunset photograph: many
red, pink, orange, purple, and blue-ish pixels; few yellow, white, and green-ish ones.

approach (algorithm 2). For color, we compute a k-element color histogram for
each item and scene, where k = 256 or 64 colors. Each component in the color
histogram is the percentage of pixels that are most similar to that color. Fig-
ure 12.7 gives an example of such a histogram of a fictitious photograph of a
sunset: there are many red, pink, orange, and purple pixels, but only a few white
and green ones.

Once these histograms are computed. one method to measure the distance
between two histograms (k x 1 vectors) ¥ and ¥ is given by

k k
Bt (E.0) = (T = AT = 5) = 33 aus (@i = 9) (25 — uy) (12.6)
i

where the superscript t indicates matrix transposition, and the color-to-color
similarity matrix A has entries a; ; which describe the similarity between color i
and color j.

12.5.2 Lower-bounding

In applying the GEMINI method for color indexing, there are two obstacles: first,
the “dimensionality curse’ (k may be large, e.g. 64 or 256 for color features) and,
most importantly, the quadratic nature of the distance function. The distance
function in the feature space involves cross-talk among the features (see equa-
tion 12.6). and thus it is a full quadratic form involving all cross terms. Not only
is such a function much more expensive to compute than a Euclidean (or any L,)
distance. but it also precludes efficient implementation of commonly used spatial
access methods. Figure 12.8 illustrates the situation. To compute the distance
between the two color histograms F and q. the, e.g.. bright-red component of &
has to be compared not only to the bright-red component of 7. but also to the
pink, orange. etc. components of .

TWO-DIMENSIONAL COLOR IMAGES 359

bright red
pink
orange
EEEE s
YA
v
HEEE 1 q
- . eg,64colors______

Figure 12.8 Illustration of the ‘cross-talk’ between two color histograms.

To resolve the cross-talk problem, we try to apply the GEMINI approach
(algorithm 2). The first step of the algorithm has been done: the distance func-
tion between two color images is given by equation 12.6, that is, D() = dhist()-
The second step is to find one or more numerical features, whose Euclidean dis-
tance would lower-bound dp;s¢(). Thus, we ask the feature-extracting question
again: If we are allowed to use only one numerical feature to describe each color
image, what should this feature be? Taking a cue from the previous section on
time series. we can consider some average value, or the first few coefficients of the
two-dimensional DFT transform. Since we have three color components, (e.g.,
Red, Green, and Blue), we could consider the average amount of red, green, and
blue in a given color image.

Notice that different color spaces (such as Munsell) can be used, with ab-
solutely no change in our indexing algorithms. Thus, we continue the discussion
with the RGB color space. This means that the color of an individual pixel is
described by the triplet (R.G,B) (for ‘R'ed, ‘G’reen, ‘B’lue). The average color
vector of an image or item T = (Rauvg. Gavg: Baug)', is defined in the obvious way,
with

R
Rawy = (1/P)Y_R(p),
p;
Gavg = (1/P)Y_Glp),
=1
pP
Baug (1/P)Y_ B(p)

=1

S

where P is the number of pixels in the item, and R(p), G(p), and B(p) are
the red, green and blue components (intensities, typically in the range 0-255)
respectively of the p-th pixel. Given the average colors T and g of two items, we
define dayvg() as the Euclidean distance between the three-dimensional average

360 MULTTIMEDIA IR: INDEXING AND SEARCHING

color vectors.

D1 = (=) (2 = g) (12.7)

Tue thivd step of the GEMINT algorithm is to prove that our simplified
Costanee dy,, 0 lower-bounds the actual distance drise (). Indeed. this is true. as
an application of the so-called Quadratic Distance Bounding or QDB Theorem
fnee 20,

The result is that, given a color query. our retrieval proceeds by first filtering
the set of images based on their average (R.G. B) color. then doing a final. more
aceurate watching using their full k-element histogram. The resulting speedup
s discussed next.

12.5.3 Experiments

We row present experimental results [244] with GEMINI on color. using the
bonuding theorern, The experiments compare the relative performance (in terms
of CPU time and disk accesses) between first. simple sequential evaluation of
dps; for all database vectors (referred to as ‘naive). and second. GEMINIL.

The experiments report the total and the CPU times required by the meth-
ods. by performing simulations on a database of N = 924 color image histograms.
eacli of & = 256 colors, of assorted natural images.

Results are shown in Figure 12.9. which presents the total response time
as a function of the sclectivity (ratio of actual hits over the database size N).
The figure also shows the CPU time for each method. Notice that, even for a
selectivity of 5% (which would return =~ 50 images to the user), the GEMINI
method is much faster than the straightforward. sequential computation of the
histogram distances. In fact, it requires from a fraction of a second up to = 4
secorsds. while the naive method requires consistently ~ 10 seconds. Moreover,
uutics that for larger databases. the naive method will have a linearly increasing
response time,

Thus. the conelusions are the following:

o [he GEMINI approach (i.e.. the idea to extract some features for a quick-
and-dirty test) motivated a fast method. using the average RGB distance:
it also motivated a strong theorem (the so-called QDB theorem [244]) which
guarantees the correctness in our case.

e Lnaddition to resolving the cross-talk problem. GEMINT solved the “dimen-
slonality curse’ problem at no extra cost. requiring only f = 3 features. as
opposed to k= 64 or 256 that dh.s¢() required.

12.6 Automatic Feature Extraction

GEMINT is useful for any setting that we can extract features from. In fact,
adgorithins for automatic feature extraction methods exist. like the “Multidimen-

TRENDS AND RESEARCH ISSUES 361

Millieconds

i . e

ains ool DS e s o BI i) e s
Fractun +f database reened

Figure 12.9 Response time vs. selectivity. for the sequential (‘naive’) retrieval and

for GEMINI.

sional Scaling” (MDS) and ‘FastMap.” Extracting features not only facilitates
the use of off-the-shelf spatial access methods. but it also allows for visual data
mining: we can plot a 2D or 3D projection of the data set. and inspect it for
clusters, correlations, and other patterns.

Figure 12.10 shows the results of FastMap on 35 documents of seven classes.
after deriving k = 3 features/dimensions. The classes include basketball reports
(‘Bbr’), abstracts of computer science technical reports (*Abs’). cooking recipes
(‘Rec’), and so on. The distance function was a decreasing function of the cosine
similarity. The figure shows the 3D scatter-plot. (a) in its entivety and (b) after
zooming into the center, to highlight the clustering abilities of FastMap. Notice
that the seven classes are separated well, in only & = 3 dimensions.

12.7 Trends and Research Issues

In this chapter we focused on how to accelerate queries by content on image
databases and, more general, on multimedia databases. Target queries are. e.g..
‘find images with a color distribution of a sunset photograph:” or. " find companies
whose stock price moves similarly to a given company’s stock.”

The method expects a distance function D{) (given by domain experts).
which should measure the dissimilarity between two images or objects Op. (s,
We mainly examined whole match. range queries (that is. ‘queries by erample’
where the user specifies the ideal object and asks for all objects that are within
distance £ from the ideal object). Extensions to other tvpes of queries (nearest
neighbors, all pairs and subpattern match) are briefly discussed. We focused on
the GEMINI approach. which combines two ideas:

e The first is to devise a ‘quick-and-dirty test. which will eliminate several

362 MULTIMEDIA IR: INDEXING AND SEARCHING

Figure 12.10 A collection of documents, after FastMap in 3-D space: (a) the whole
collection and (b) magnification of the dashed box.

non-qualifying objects. To achieve that, we should extract f numerical
features from each object, which should somehow describe the object (for
example, the first few DFT coefficients for a time sequence, or for a gray-
scale image). The key question to ask is ‘If we are allowed to use only one
numerical feature to describe each data object, what should this feature be?’

e The second idea is to further accelerate the search, by organizing these f-
dimensional points using state-of-the art spatial access methods [400], like
the R*-trees. These methods typically group neighboring points together,
thus managing to discard large unpromising portions of the address space
early.

The above two ideas achieve fast searching. Moreover, we need to consider the
condition under which the above method will be not only fast, but also correct,
in the sense that it will not miss any qualifying object. Notice that false alarms
are acceptable, because they can be discarded, in the obvious way. The answer is
provided by the lower-bounding lemma, which intuitively states that the mapping
F() of objects to f-D points should make things look closer.

In the rest of the chapter, we discussed how to apply GEMINI for a variety
of environments, like 1D time sequences and 2D color images. As discussed in
the bibliographic notes, GEMINI has been applied to multiple other settings,
like tumor-like shapes, time sequences with the time-warping distance function,
2D medical images, and so on. Moreover, it is one of the main reasons behind a
strong recent interest on high-dimensionality index structures.

With respect to future trends, probably the most notable and most chal-
lenging trend is data mining in multimedia and mixed-media data sets. For
example, given a collection of medical records, with demographic data, text data

BIBLIOGRAPHIC DISCUSSION 363

(like history), 2D images (like X-rays), and 1D signals (electrocardiograms), we
want to find correlations, clusters, patterns, and outliers. Successful detection of
such patterns is the basis for forecasting, for hypothesis formation. anomaly de-
tection, and several other knowledge discovery operations. GEMINI, insisting on
turning every data type into a feature vector, should prove extremely useful: the
reason is that it opens the door for off-the-shelf statistical and machine learning
packages, which typically expect a set of vectors as input. Typical such packages
are the ‘Principal Component Analysis’ (PCA, also known as ‘Latent Seman-
tic Indexing’ (LSI), ‘Karhunen-Loeve Transform’ (KLT), and ‘Singular Value
Decomposition’ (SVD)), Artificial Neural Networks, tree classifiers, to name a
few.

12.8 Bibliographic Discussion
Spatial Access Methods

Structures and Algorithms

For a recent, very thorough survey of spatial access methods, see [290]. For
the introduction of R-trees, see the seminal paper by Guttman [330]. Among
the numerous follow-up variations, the R*-tree [69] seems to be one of the best
performing methods, using the idea of deferred splitting with ‘forced-reinsert,’
thus achieving higher space utilization, and therefore more compact, shorter, and
faster trees. Another strong contender is the Hilbert R-tree {427], which achieves
even higher space utilization and often outperforms the R*-tree. A generalized
framework and implementation for all these methods is the GiST tree [362] which
is available, at the time of writing, at http://gist.cs.berkeley.edu:8000
/gist.

With respect to algorithms, the range search is trivial in R-trees. Nearest
neighbors queries require more careful record keeping, with a branch-and-bound
algorithm (e.g., [686]). Spatial joins (e.g., ‘find all pairs of points within distance
¢’) have also attracted a lot of interest: see the filtering algorithms in [119] and
the methods in [521] and [458].

Indexing high-dimensional address spaces has attracted a lot of recent in-
terest: the TV-trees [519] adaptively use only a few of the available dimensions.
The SR-trees [431] use spheres in conjunction to rectangles, as bounding re-
gions. The more recent X-trees [83] gracefully switch to sequential scanning for
extremely high dimensionalities.

For the analysis of spatial access methods and selectivity estimation, the
concept of ‘fractal dimension’ has given very accurate results in every case it
was tried: range queries [247], nearest neighbor queries [628]. spatial joins [79],
quadtrees [245]. The idea behind the fractal dimension is to consider the intrinsic
dimensionality of the given set of points. For example, consider the points on
the diagonal of a 3D cube: their ‘embedding’ dimensionality is E = 3; however,
their intrinsic dimensionality is D = 1. Using the appropriate definition for the
dimensionality, like the Hausdorff fractal dimension, or the correlation fractal

364 MULTIMEDIA IR: INDEXING AND SEARCHING

dimension [712], it turns out that real data sets have a fractional dimensionality:
the value is 1.1-1.2 for coastlines, 2.7 for the brain surface of mammals, ~1.3
for the periphery of rain patches, 1.7 for the end-points of road segments, to
name but a few [247].

Metric Trees

Finally, a class of access methods that operate on the distance function directly
seems promising. These methods require only a distance function, and they
typically build a cluster hierarchy, that is, a tree structure of ‘spheres’, which
include the children spheres, and so on, recursively. This class includes the
Burkhard-Keller n..ethods [131], the Fixed-query trees [47], the GNAT trees [116],
the MVP trees [112], and the M-trees [172]. The technology is still young: most
of the above methods are designed for static data sets. On the positive side,
they don’t need feature extraction; on the negative side, they don’t provide for
visualization and data mining. like GEMINI and FastMap do (see Figure 12.10).

Multimedia Indexing, DSP and Feature Extraction

GEMINI — Feature Eztraction

Probably the earliest paper that suggested feature extraction for fast indexing
is [400], for approximate matching in shapes. The proof of the lower bounding
lemma is in [249)].

Algorithms for automatic feature extraction include the traditional, Mul-
tidimensional Scaling (MDS), see, e.g., [462]. MDS has attracted tremendous
interest, but it is O(N?2), quadratic on the number of database objects N. Thus,
it is impractical for large data sets. An O(V) alternative is the so-called F: astMap
[248], which was used to produce Figure 12.10.

Time Sequences
For additional, more elaborate distance functions, that include time-warping,
see Chapter 8 or [706]. An indexing method with the time-warping distance
function has recently been developed [840]. using FastMap.

For linear time sequence forecasting, see the classic book on the Box-
Jenkins methodology [109]. For more recent, non-linear forecasting methods, see
the intriguing volumes from the Santa-Fe Institute [149. 808.

Drgital Signal Processing (DSP)

Powerful tools for the analysis of time sequences and n-D signals in general in-
clude the traditional Fourier transform (see, e.g., [622]), the popular discrete
cosine transform. which is the basis for the JPEG image compression stan-
dard [802], and the more recent. and even more effective, wavelet transform
(DWT) [689]. An excellent introduction to all these methods, as well as source
code, is available in [651].

BIBLIOGRAPHIC DISCUSSION 365

Image Features and Similarity Functions

There is a lot of work in machine vision on feature extraction and similarity
measures. Classic references are e.g.. [53, 224. 285]. A recent survey on image
registration and image comparison methods is in [125]. The proof for quadratic
distance bounding theorem of section 12.5 is in [244].

Other Applications of Multimedia Indezing

There are numerous papers on indexing in multimedia databases. A small sample
of them include the following: for time sequences allowing scaling or subpattern
matching. see [305], [7], [246]. For voice and video see, e.g., [800]. For shapes
see, e.g., [244]. For medical image databases see, e.g., [381], [454], [635]. For
multimedia searching on the Web. see. e.g.. [4. 733, 80, T14].

Data Mining
Finally, there is a lot of work on traditional machine learning [565] and statistics
(e.g., [408]).

Chapter 13
Searching the Web

13.1 Introduction

The World Wide Web dates from the end of the 1980s [85] and no one could
have imagined its current impact. The boom in the use of the Web and its
exponential growth are now well known. Just the amount of textual data avail-
able is estimated to be in the order of one terabyte. In addition, other media,
such as images, audio, and video, are also available. Thus, the Web can be seen
as a very large, unstructured but ubiquitous database. This triggers the need
for efficient tools to manage, retrieve, and filter information from this database.
This problem is also becoming important in large intranets, where we want to
extract or infer new information to support a decision process, a task called data
mining. As mentioned in Chapter 1, we make the important distinction between
data and information retrieval. We are interested in the latter case, in which the
user searches for data that fulfills his information need.

We focus on text, because although there are techniques to search for im-
ages and other non-textual data, they cannot be applied (yet) on a large scale.
We also emphasize syntactic search. That is, we search for Web documents that
have user-specified words or patterns in their text. As discussed in Chapter 2,
such words or patterns may or may not reflect the intrinsic semantics of the
text. An alternative approach to syntactic search is to do a natural language
analysis of the text. Although the techniques to preprocess natural language and
extract the text semantics are not new, they are not yet very effective and they
are also too costly for large amounts of data. In addition, in most cases they
are only effective with well structured text, a thesaurus, and other contextual
information.

There are basically three different forms of searching the Web. Two of
them are well known and are frequently used. The first is to use search engines
that index a portion of the Web documents as a full-text database. The second is
to use Web directories, which classify selected Web documents by subject. The
third and not yet fully available, is to search the Web exploiting its hyperlinkt

t We will use hyperlink or link to denote a pointer (anchor) from a Web page to another Web
page.

367

368 SEARCHING THE WEB

structure. We cover all three forms of Web search here.

We first discuss the challenges of searching the Web, followed by some Web
statistics and models which can be used to understand the complexity of the
problem. Next, we discuss in detail the main tools used today to search the
Web. The discussion includes search engines, Web directories, hybrid systems,
user interfaces, and searching examples. We continue with new query languages
that exploit the graphical structure of the Web. F inally. we survey current trends
and research issues. As Web research is a very dynamic field, we may have missed
some important work, for which we apologize in advance.

13.2 Challenges

We now mention the main problems posed by the Web. We can divide them in
two classes: problems with the data itself and problems regarding the user and
his interaction with the retrieval system. The problems related to the data are:

¢ Distributed data: due to the intrinsic nature of the Web, data spans over
many computers and platforms. These computers are interconnected with
no predefined topology and the available bandwidth and reliability on the
network interconnections varies widely.

¢ High percentage of volatile data: due to Internet dynamics, new com-
puters and data can be added or removed easily (it is estimated that 40%
of the Web changes every month [424]). We also have dangling links and
relocation problems when domain or file names change or disappear.

e Large volume: the exponential growth of the Web poses scaling issues
that are difficult to cope with.

¢ Unstructured and redundant data: most people say that the Web is
a distributed hypertext. However, this is not exactly so. Any hypertext
has a conceptual model behind it, which organizes and adds consistency
to the data and the hyperlinks. That is hardly true in the Web, even for
individual documents. In addition, each HTML page is not well structured
and some people use the term semi-structured data. Moreover, much Web
data is repeated (mirrored or copied) or very similar. Approximately 30%
of Web pages are (near) duplicates [120, 723]. Semantic redundancy can
be even larger.

e Quality of data: the Web can be considered as a new publishing medium.
However, there is, in most cases, no editorial process. So, data can be false,
invalid (for example, because it is too old). poorly written or, typically, with
many errors from different sources (typos, grammatical mistakes. OCR
errors. etc.). Preliminary studies show that the number of words with
typos can range from 1 in 200 for common words to 1 in 3 for foreign
surnames [588].

